1
|
Wearing SC, Hooper SL, Langton CM, Keiner M, Horstmann T, Crevier-Denoix N, Pourcelot P. The Biomechanics of Musculoskeletal Tissues during Activities of Daily Living: Dynamic Assessment Using Quantitative Transmission-Mode Ultrasound Techniques. Healthcare (Basel) 2024; 12:1254. [PMID: 38998789 PMCID: PMC11241410 DOI: 10.3390/healthcare12131254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The measurement of musculoskeletal tissue properties and loading patterns during physical activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon, and muscle tissues, particularly with injury and repair. Although the properties and loading of these connective tissues have been quantified using direct measurement techniques, these methods are highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are used more widely but are known to yield different parameter values than direct measurements. Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of human musculoskeletal tissue and describes the operating principals, application, and emerging research findings gained from the use of quantitative transmission-mode ultrasound measurement techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and during activities of daily living. In contrast to standard ultrasound imaging approaches, these techniques assess the interaction between ultrasound compression waves and connective tissues to provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and density of tissues. By taking advantage of the physical relationship between the axial velocity of ultrasound compression waves and the instantaneous modulus of the propagation material, these techniques can also be used to estimate the in vivo loading environment of relatively superficial soft connective tissues during sports and activities of daily living. This paper highlights key findings from clinical studies in which quantitative transmission-mode ultrasound has been used to measure the properties and loading of bone, tendon, and muscle tissue during common physical activities in healthy and pathological populations.
Collapse
Affiliation(s)
- Scott C. Wearing
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | - Sue L. Hooper
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christian M. Langton
- Griffith Centre of Rehabilitation Engineering, Griffith University, Southport, QLD 4222, Australia
| | - Michael Keiner
- Department of Exercise and Training Science, German University of Health and Sport, 85737 Ismaning, Bavaria, Germany
| | - Thomas Horstmann
- School of Medicine and Health, Technical University of Munich, 80992 Munich, Bavaria, Germany
| | | | - Philippe Pourcelot
- INRAE, BPLC Unit, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Le Y, Chen J, Rossman P, Bolster B, Kannengiesser S, Manduca A, Glaser K, Sui Y, Huston J, Yin Z, Ehman RL. Wavelet MRE: Imaging propagating broadband acoustic waves with wavelet-based motion-encoding gradients. Magn Reson Med 2024; 91:1923-1935. [PMID: 38098427 PMCID: PMC10950519 DOI: 10.1002/mrm.29972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 03/20/2024]
Abstract
PURPOSE To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform. METHODS A wavelet MRE sequence was developed with motion-encoding gradients based on Haar wavelets. From the phase images' displacement was estimated using an inverse transform. Simulations were performed using a frequency sweep and a transient as ground-truth motions. A PVC phantom was scanned using wavelet MRE and standard MRE with both transient (one and 10 cycles of 90-Hz motion) and steady-state dual-frequency motion (30 and 60 Hz) for comparison. The technique was tested in a human brain, and motion trajectories were estimated for each voxel. RESULTS In simulation, the displacement information estimated from wavelet MRE closely matched the true motion. In the phantom test, the MRE phase data generated from the displacement information derived from wavelet MRE agreed well with standard MRE data. Testing of wavelet MRE to assess transient motion waveforms in the brain was successful, and the tissue motion observed was consistent with a previous study. CONCLUSION The uniform and broadband frequency response of wavelet MRE makes it a promising method for imaging transient, multifrequency motion, or motion with unknown frequency content. One potential application is measuring the response of brain tissue undergoing low-amplitude, transient vibrations as a model for the study of traumatic brain injury.
Collapse
Affiliation(s)
- Yuan Le
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | - Bradley Bolster
- MR Collaborations, Siemens Medical Solutions USA, Inc., Malvern, PA, USA
| | | | | | - Kevin Glaser
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Yi Sui
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Ziying Yin
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
3
|
Wang S, Okamoto RJ, McGarry MDJ, Bayly PV. Shear wave speeds in a nearly incompressible fibrous material with two unequal fiber families. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2327-2338. [PMID: 38557738 PMCID: PMC10987194 DOI: 10.1121/10.0025467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The mechanical properties of soft biological tissues can be characterized non-invasively by magnetic resonance elastography (MRE). In MRE, shear wave fields are induced by vibration, imaged by magnetic resonance imaging, and inverted to estimate tissue properties in terms of the parameters of an underlying material model. Most MRE studies assume an isotropic material model; however, biological tissue is often anisotropic with a fibrous structure, and some tissues contain two or more families of fibers-each with different orientations and properties. Motivated by the prospect of using MRE to characterize such tissues, this paper describes the propagation of shear waves in soft fibrous material with two unequal fiber families. Shear wave speeds are expressed in terms of material parameters, and the effect of each parameter on the shear wave speeds is investigated. Analytical expressions of wave speeds are confirmed by finite element simulations of shear wave transmission with various polarization directions. This study supports the feasibility of estimating parameters of soft fibrous tissues with two unequal fiber families in vivo from local shear wave speeds and advances the prospects for the mechanical characterization of such biological tissues by MRE.
Collapse
Affiliation(s)
- Shuaihu Wang
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130, USA
| | - Ruth J Okamoto
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130, USA
| | - Matthew D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
4
|
Paley CT, Knight AE, Jin FQ, Moavenzadeh SR, Rouze NC, Pietrosimone LS, Hobson-Webb LD, Palmeri ML, Nightingale KR. Rotational 3D shear wave elasticity imaging: Effect of knee flexion on 3D shear wave propagation in in vivo vastus lateralis. J Mech Behav Biomed Mater 2024; 150:106302. [PMID: 38160641 PMCID: PMC11367681 DOI: 10.1016/j.jmbbm.2023.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Skeletal muscle is a complex tissue, exhibiting not only direction-dependent material properties (commonly modeled as a transversely isotropic material), but also changes in observed material properties due to factors such as contraction and passive stretch. In this work, we evaluated the effect of muscle passive stretch on shear wave propagation along and across the muscle fibers using a rotational 3D shear wave elasticity imaging system and automatic analysis methods. We imaged the vastus lateralis of 10 healthy volunteers, modulating passive stretch by imaging at 8 different knee flexion angles (controlled by a BioDex system). In addition to demonstrating the ability of this acquisition and automatic processing system to estimate muscle shear moduli over a range of values, we evaluated potential higher order biomarkers for muscle health that capture the change in muscle stiffness along and across the fibers with changing knee flexion. The median within-subject variability of these biomarkers is found to be <16%, suggesting promise as a repeatable clinical metric. Additionally, we report an unexpected observation: that shear wave signal amplitude along the fibers increases with increasing flexion and muscle stiffness, which is not predicted by transversely isotropic (TI) material simulations. This observation may point to an additional potential biomarker for muscle health or inform other material modeling choices for muscle.
Collapse
Affiliation(s)
- Courtney Trutna Paley
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA.
| | - Anna E Knight
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Felix Q Jin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura S Pietrosimone
- Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, USA
| | - Lisa D Hobson-Webb
- Neuromuscular Division, Department of Neurology, Duke University, Durham, NC, USA
| | - Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
5
|
Smith DR, Helm CA, Zonnino A, McGarry MD, Johnson CL, Sergi F. Individual Muscle Force Estimation in the Human Forearm Using Multi-Muscle MR Elastography (MM-MRE). IEEE Trans Biomed Eng 2023; 70:3206-3215. [PMID: 37279119 PMCID: PMC10636590 DOI: 10.1109/tbme.2023.3283185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To establish the sensitivity of magnetic resonance elastography (MRE) to active muscle contraction in multiple muscles of the forearm. METHODS We combined MRE of forearm muscles with an MRI-compatible device, the MREbot, to simultaneously measure the mechanical properties of tissues in the forearm and the torque applied by the wrist joint during isometric tasks. We measured shear wave speed of thirteen forearm muscles via MRE in a series of contractile states and wrist postures and fit these outputs to a force estimation algorithm based on a musculoskeletal model. RESULTS Shear wave speed changed significantly upon several factors, including whether the muscle was recruited as an agonist or antagonist (p = 0.0019), torque amplitude (p = <0.0001), and wrist posture (p = 0.0002). Shear wave speed increased significantly during both agonist (p = <0.0001) and antagonist (p = 0.0448) contraction. Additionally, there was a greater increase in shear wave speed at greater levels of loading. The variations due to these factors indicate the sensitivity to functional loading of muscle. Under the assumption of a quadratic relationship between shear wave speed and muscle force, MRE measurements accounted for an average of 70% of the variance in the measured joint torque. CONCLUSION This study shows the ability of MM-MRE to capture variations in individual muscle shear wave speed due to muscle activation and presents a method to estimate individual muscle force through MM-MRE derived measurements of shear wave speed. SIGNIFICANCE MM-MRE could be used to establish normal and abnormal muscle co-contraction patterns in muscles of the forearm controlling hand and wrist function.
Collapse
Affiliation(s)
- Daniel R. Smith
- Department of Biomedical Engineering, University of Delaware, Newark DE, 19713
| | - Cody A. Helm
- Department of Biomedical Engineering, University of Delaware, Newark DE, 19713
| | | | | | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark DE, 19713
| | - Fabrizio Sergi
- Department of Biomedical Engineering, University of Delaware, Newark DE, 19713
| |
Collapse
|
6
|
Kailash KA, Guertler CA, Johnson CL, Okamoto RJ, Bayly PV. Measurement of relative motion of the brain and skull in the mini-pig in-vivo. J Biomech 2023; 156:111676. [PMID: 37329640 PMCID: PMC11086683 DOI: 10.1016/j.jbiomech.2023.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
The mechanical role of the skull-brain interface is critical to the pathology of concussion and traumatic brain injury (TBI) and may evolve with age. Here we characterize the skull-brain interface in juvenile, female Yucatan mini-pigs from 3 to 6 months old using techniques from magnetic resonance elastography (MRE). The displacements of the skull and brain were measured by a motion-sensitive MR imaging sequence during low-amplitude harmonic motion of the head. Each animal was scanned four times at 1-month intervals. Harmonic motion at 100 Hz was excited by three different configurations of a jaw actuator in order to vary the direction of loading. Rigid-body linear motions of the brain and skull were similar, although brain rotations were consistently smaller than corresponding skull rotations. Relative displacements between the brain and skull were estimated for voxels on the surface of the brain. Amplitudes of relative displacements between skull and brain were 1-3 μm, approximately 25-50% of corresponding skull displacements. Maps of relative displacement showed variations by anatomical region, and the normal component of relative displacement was consistently 25-50% of the tangential component. These results illuminate the mechanics of the skull-brain interface in a gyrencephalic animal model relevant to human brain injury and development.
Collapse
Affiliation(s)
- Keshav A Kailash
- Washington University in St. Louis, Biomedical Engineering, United States
| | - Charlotte A Guertler
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | | | - Ruth J Okamoto
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Philip V Bayly
- Washington University in St. Louis, Biomedical Engineering, United States; Washington University in St. Louis, Mechanical Engineering and Material Science, United States.
| |
Collapse
|