1
|
Saha Tchinda B, Tchiotsop D. A lightweight 1D convolutional neural network model for arrhythmia diagnosis from electrocardiogram signal. Phys Eng Sci Med 2025:10.1007/s13246-025-01525-1. [PMID: 39998757 DOI: 10.1007/s13246-025-01525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Electrocardiogram (ECG) is used by cardiologist to diagnose heart diseases. The use of ECG signal in an artificial intelligence system can permit to automatically analyze these signals and thereby improve diagnosis quality. For this purpose, many models have been proposed in the literature. But many of these models are complex enough for implementation in an embedded system dedicated to medical diagnosis. Still others have performances that remain to be improved. To solve this problem of complexity, while improving performance, we propose a simple 1D convolutional neural network model for cardiac arrhythmia diagnosis. The proposed model combines two convolution layers, two max pooling layers, three dense layers, two dropout layers and a flatten layer. We apply the proposed model on the public MIT-BIH database for inter-patient classification of five distinct types of heartbeat rhythms which are consistent with the association for advancement of medical instrumentation (AAMI) standard. We also apply our model on the PTB database in order to evaluate its generalization capability. On the MIT-BIH database, the results provide an accuracy of 0.9842, a precision of 0.9523, a sensitivity of 0.8760, a specificity of 0.9869, a negative predictive value (NPV) of 0.9936, an average area under the ROC curve (AUC) of 0.99 and a F1-measure of 0.9095. The accuracy, precision, sensitivity, specificity, NPV, and AUC on the PTB dataset are 0.9924, 0.9938, 0.9957, 0.9844, 0.9892, and 1, respectively. Compared to other existing models, for unbalanced data, the performances obtained by our model are quite interesting for an inter-patient classification.
Collapse
Affiliation(s)
- Beaudelaire Saha Tchinda
- URAIA, Fotso Victor University Institute of Technology, University of Dschang, P.O Box 134, Bandjoun, Cameroon.
| | - Daniel Tchiotsop
- URAIA, Fotso Victor University Institute of Technology, University of Dschang, P.O Box 134, Bandjoun, Cameroon
| |
Collapse
|
2
|
Si J, Bao Y, Chen F, Wang Y, Zeng M, He N, Chen Z, Guo Y. Research on atrial fibrillation diagnosis in electrocardiograms based on CLA-AF model. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2025; 6:82-95. [PMID: 39846071 PMCID: PMC11750197 DOI: 10.1093/ehjdh/ztae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/04/2024] [Accepted: 10/27/2024] [Indexed: 01/24/2025]
Abstract
Aims The electrocardiogram (ECG) is the primary method for diagnosing atrial fibrillation (AF), but interpreting ECGs can be time-consuming and labour-intensive, which deserves more exploration. Methods and results We collected ECG data from 6590 patients as YY2023, classified as Normal, AF, and Other. Convolutional Neural Network (CNN), bidirectional Long Short-Term Memory (BiLSTM), and Attention construct the AF recognition model CNN BiLSTM Attention-Atrial Fibrillation (CLA-AF). The generalization ability of the model is validated on public datasets CPSC2018, PhysioNet2017, and PTB-XL, and we explored the performance of oversampling, resampling, and hybrid datasets. Finally, additional PhysioNet2021 was added to validate the robustness and applicability in different clinical settings. We employed the SHapley Additive exPlanations (SHAP) method to interpret the model's predictions. The F1-score, Precision, and area under the ROC curve (AUC) of the CLA-AF model on YY2023 are 0.956, 0.970, and 1.00, respectively. Similarly, the AUC on CPSC2018, PhysioNet2017, and PTB-XL reached above 0.95, demonstrating its strong generalization ability. After oversampling PhysioNet2017, F1-score and Recall improved by 0.156 and 0.260. Generalization ability varied with sampling frequency. The model trained from the hybrid dataset has the most robust generalization ability, achieving an AUC of 0.96 or more. The AUC of PhysioNet2021 is 1.00, which proves the applicability of CLA-AF. The SHAP values visualization results demonstrate that the model's interpretation of AF aligns with the diagnostic criteria of AF. Conclusion The CLA-AF model demonstrates a high accuracy in recognizing AF from ECG, exhibiting remarkable applicability and robustness in diverse clinical settings.
Collapse
Affiliation(s)
- Jiajia Si
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China
| | - Yiliang Bao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China
| | - Fengling Chen
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou 412007, Hunan, China
- Hengyang Medical School, University of South China, No. 28 West Changsheng Road, Hengyang 421001, Hunan, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China
- Hengyang Medical School, University of South China, No. 28 West Changsheng Road, Hengyang 421001, Hunan, China
| | - Yuan Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou 412007, Hunan, China
- Hengyang Medical School, University of South China, No. 28 West Changsheng Road, Hengyang 421001, Hunan, China
| |
Collapse
|
3
|
Safdar MF, Nowak RM, Pałka P. Pre-Processing techniques and artificial intelligence algorithms for electrocardiogram (ECG) signals analysis: A comprehensive review. Comput Biol Med 2024; 170:107908. [PMID: 38217973 DOI: 10.1016/j.compbiomed.2023.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Electrocardiogram (ECG) are the physiological signals and a standard test to measure the heart's electrical activity that depicts the movement of cardiac muscles. A review study has been conducted on ECG signals analysis with the help of artificial intelligence (AI) methods over the last ten years i.e., 2012-22. Primarily, the method of ECG analysis by software systems was divided into classical signal processing (e.g. spectrograms or filters), machine learning (ML) and deep learning (DL), including recursive models, transformers and hybrid. Secondly, the data sources and benchmark datasets were depicted. Authors grouped resources by ECG acquisition methods into hospital-based portable machines and wearable devices. Authors also included new trends like advanced pre-processing, data augmentation, simulations and agent-based modeling. The study found improvement in ECG examination perfection made each year through ML, DL, hybrid models, and transformers. Convolutional neural networks and hybrid models were more targeted and proved efficient. The transformer model extended the accuracy from 90% to 98%. The Physio-Net library helps acquire ECG signals, including the popular benchmark databases such as MIT-BIH, PTB, and challenging datasets. Similarly, wearable devices have been established as a appropriate option for monitoring patient health without the time and place limitations and are also helpful for AI model calibration with so far accuracy of 82%-83% on Samsung smartwatch. In the pre-processing signals, spectrogram generation through Fourier and wavelet transformations are erected leading approaches promoting on average accuracy of 90%-95%. Likewise, data enhancement using geometrical techniques is well-considered; however, extraction and concatenation-based methods need attention. As the what-if analysis in healthcare or cardiac issues can be performed using a complex simulation, the study reviews agent-based modeling and simulation approaches for cardiovascular risk event assessment.
Collapse
Affiliation(s)
- Muhammad Farhan Safdar
- Institute of Computer Science, Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-665 Warsaw, Poland.
| | - Robert Marek Nowak
- Institute of Computer Science, Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-665 Warsaw, Poland
| | - Piotr Pałka
- Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-665 Warsaw, Poland
| |
Collapse
|
4
|
Ciccarelli M, Giallauria F, Carrizzo A, Visco V, Silverio A, Cesaro A, Calabrò P, De Luca N, Mancusi C, Masarone D, Pacileo G, Tourkmani N, Vigorito C, Vecchione C. Artificial intelligence in cardiovascular prevention: new ways will open new doors. J Cardiovasc Med (Hagerstown) 2023; 24:e106-e115. [PMID: 37186561 DOI: 10.2459/jcm.0000000000001431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Prevention and effective treatment of cardiovascular disease are progressive issues that grow in tandem with the average age of the world population. Over recent decades, the potential role of artificial intelligence in cardiovascular medicine has been increasingly recognized because of the incredible amount of real-world data (RWD) regarding patient health status and healthcare delivery that can be collated from a variety of sources wherein patient information is routinely collected, including patient registries, clinical case reports, reimbursement claims and billing reports, medical devices, and electronic health records. Like any other (health) data, RWD can be analysed in accordance with high-quality research methods, and its analysis can deliver valuable patient-centric insights complementing the information obtained from conventional clinical trials. Artificial intelligence application on RWD has the potential to detect a patient's health trajectory leading to personalized medicine and tailored treatment. This article reviews the benefits of artificial intelligence in cardiovascular prevention and management, focusing on diagnostic and therapeutic improvements without neglecting the limitations of this new scientific approach.
Collapse
Affiliation(s)
- Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Angelo Silverio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nicola De Luca
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Costantino Mancusi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Nidal Tourkmani
- Cardiology and Cardiac Rehabilitation Unit, 'Mons. Giosuè Calaciura Clinic', Catania, Italy
- ABL, Guangzhou, China
| | - Carlo Vigorito
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli
| |
Collapse
|
5
|
Zhang H, Liu C, Tang F, Li M, Zhang D, Xia L, Crozier S, Gan H, Zhao N, Xu W, Liu F. Atrial fibrillation classification based on the 2D representation of minimal subset ECG and a non-deep neural network. Front Physiol 2023; 14:1070621. [PMID: 36866172 PMCID: PMC9971936 DOI: 10.3389/fphys.2023.1070621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its early detection is critical for preventing complications and optimizing treatment. In this study, a novel AF prediction method is proposed, which is based on investigating a subset of the 12-lead ECG data using a recurrent plot and ParNet-adv model. The minimal subset of ECG leads (II &V1) is determined via a forward stepwise selection procedure, and the selected 1D ECG data is transformed into 2D recurrence plot (RP) images as an input to train a shallow ParNet-adv Network for AF prediction. In this study, the proposed method achieved F1 score of 0.9763, Precision of 0.9654, Recall of 0.9875, Specificity of 0.9646, and Accuracy of 0.9760, which significantly outperformed solutions based on single leads and complete 12 leads. When studying several ECG datasets, including the CPSC and Georgia ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the new method achieved F1 score of 0.9693 and 0.8660, respectively. The results suggested a good generalization of the proposed method. Compared with several state-of-art frameworks, the proposed model with a shallow network of only 12 depths and asymmetric convolutions achieved the highest average F1 score. Extensive experimental studies proved that the proposed method has a high potential for AF prediction in clinical and particularly wearable applications.
Collapse
Affiliation(s)
- Hua Zhang
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Chengyu Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Fangfang Tang
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Mingyan Li
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Dongxia Zhang
- Zhejiang Provincial Centre for Disease Control and Prevention CN, Hangzhou, Zhejiang, China
| | - Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Hongping Gan
- School of Software, Northwestern Polytechnical University, Xi’an, China
| | - Nan Zhao
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Wenlong Xu
- Department of Biomedical Engineering, China Jiliang University, Hangzhou, Zhejiang, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Wesselius FJ, van Schie MS, de Groot NMS, Hendriks RC. An accurate and efficient method to train classifiers for atrial fibrillation detection in ECGs: Learning by asking better questions. Comput Biol Med 2022; 143:105331. [PMID: 35231835 DOI: 10.1016/j.compbiomed.2022.105331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND An increasing number of wearables are capable of measuring electrocardiograms (ECGs), which may help in early detection of atrial fibrillation (AF). Therefore, many studies focus on automated detection of AF in ECGs. A major obstacle is the required amount of manually labelled data. This study aimed to provide an efficient and reliable method to train a classifier for AF detection using large datasets of real-life ECGs. METHOD Human-controlled semi-supervised learning was applied, consisting of two phases: the pre-training phase and the semi-automated training phase. During pre-training, an initial classifier was trained, which was used to predict the classes of new ECG segments in the semi-automated training phase. Based on the degree of certainty, segments were added to the training dataset automatically or after human validation. Thereafter, the classifier was retrained and this procedure was repeated. To test the model performance, a real-life telemetry dataset containing 3,846,564 30-s ECG segments of hospitalized patients (n = 476) and the CinC Challenge 2017 database were used. RESULTS After pre-training, the average F1-score on a hidden testing dataset was 89.0%. Furthermore, after the pre-training phase 68.0% of all segments in the hidden test set could be classified with an estimated probability of successful classification of 99%, providing an F1-score of 97.9% for these segments. During the semi-automated training phase, this F1-score showed little variation (97.3%-97.9% in the hidden test set), whilst the number of segments which could be automatically classified increased from 68.0% to 75.8% due to the enhanced training dataset. At the same time, the overall F1-score increased from 89.0% to 91.4%. CONCLUSIONS Human-validated semi-supervised learning makes training a classifier more time efficient without compromising on accuracy, hence this method might be valuable in the automated detection of AF in real-life ECGs.
Collapse
Affiliation(s)
- Fons J Wesselius
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands; Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands.
| | - Richard C Hendriks
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
7
|
Katsaouni N, Aul F, Krischker L, Schmalhofer S, Hedrich L, Schulz MH. Energy efficient convolutional neural networks for arrhythmia detection. ARRAY 2022. [DOI: 10.1016/j.array.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Liu J, Wang H, Yang Z, Quan J, Liu L, Tian J. Deep learning-based computer-aided heart sound analysis in children with left-to-right shunt congenital heart disease. Int J Cardiol 2021; 348:58-64. [PMID: 34902505 DOI: 10.1016/j.ijcard.2021.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/20/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to explore a new algorithm model capable of leverage deep learning to screen and diagnose specific types of left-to-right shunt congenital heart disease (CHD) in children. METHODS Using deep learning, screening models were constructed to identify 884 heart sound recordings from children with left-to-right shunt CHD. The most suitable model for each type was summarized and compared with expert auscultation. An exploratory analysis was conducted to assess whether there were correlations between heart sounds and left ventricular ejection fraction (LVEF), pulmonary artery pressure, and malformation size. RESULTS The residual convolution recurrent neural network (RCRnet) classification model had higher accuracy than other models with respect to atrial septal defect (ASD), ventricular septum defect (VSD), patent ductus arteriosus (PDA) and combined CHD, and the best auscultation sites were determined to be the 4th, 5th, 2nd and 3rd auscultation areas, respectively. The diagnostic results of this model were better than those derived from expert auscultation, with sensitivity values of 0.932-1.000, specificity values of 0.944-0.997, precision values of 0.888-0.997 and accuracy values of 0.940-0.994. Absolute Pearson correlation coefficient values between heart sounds of the four types of CHD and LVEF, right ventricular systolic pressure (RVSP) and malformation size were all less than 0.3. CONCLUSIONS The RCRnet model can preliminarily determine types of left-to-right shunt CHD and improve diagnostic efficiency, which may provide a new choice algorithmic CHD screening in children.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Medical Data Science Academy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Haolin Wang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Yang
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Junjun Quan
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Anesthesiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Lingjuan Liu
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Jie Tian
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| |
Collapse
|
9
|
Krasteva V, Christov I, Naydenov S, Stoyanov T, Jekova I. Application of Dense Neural Networks for Detection of Atrial Fibrillation and Ranking of Augmented ECG Feature Set. SENSORS (BASEL, SWITZERLAND) 2021; 21:6848. [PMID: 34696061 PMCID: PMC8538849 DOI: 10.3390/s21206848] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Considering the significant burden to patients and healthcare systems globally related to atrial fibrillation (AF) complications, the early AF diagnosis is of crucial importance. In the view of prominent perspectives for fast and accurate point-of-care arrhythmia detection, our study optimizes an artificial neural network (NN) classifier and ranks the importance of enhanced 137 diagnostic ECG features computed from time and frequency ECG signal representations of short single-lead strips available in 2017 Physionet/CinC Challenge database. Based on hyperparameters' grid search of densely connected NN layers, we derive the optimal topology with three layers and 128, 32, 4 neurons per layer (DenseNet-3@128-32-4), which presents maximal F1-scores for classification of Normal rhythms (0.883, 5076 strips), AF (0.825, 758 strips), Other rhythms (0.705, 2415 strips), Noise (0.618, 279 strips) and total F1 relevant to the CinC Challenge of 0.804, derived by five-fold cross-validation. DenseNet-3@128-32-4 performs equally well with 137 to 32 features and presents tolerable reduction by about 0.03 to 0.06 points for limited input sets, including 8 and 16 features, respectively. The feature reduction is linked to effective application of a comprehensive method for computation of the feature map importance based on the weights of the activated neurons through the total path from input to specific output in DenseNet. The detailed analysis of 20 top-ranked ECG features with greatest importance to the detection of each rhythm and overall of all rhythms reveals DenseNet decision-making process, noticeably corresponding to the cardiologists' diagnostic point of view.
Collapse
Affiliation(s)
- Vessela Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria; (V.K.); (I.C.); (T.S.)
| | - Ivaylo Christov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria; (V.K.); (I.C.); (T.S.)
| | - Stefan Naydenov
- Department of Internal Diseases “Prof. St. Kirkovich”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Todor Stoyanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria; (V.K.); (I.C.); (T.S.)
| | - Irena Jekova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria; (V.K.); (I.C.); (T.S.)
| |
Collapse
|
10
|
Zhang H, Liu C, Zhang Z, Xing Y, Liu X, Dong R, He Y, Xia L, Liu F. Recurrence Plot-Based Approach for Cardiac Arrhythmia Classification Using Inception-ResNet-v2. Front Physiol 2021; 12:648950. [PMID: 34079470 PMCID: PMC8165394 DOI: 10.3389/fphys.2021.648950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
The present study addresses the cardiac arrhythmia (CA) classification problem using the deep learning (DL)-based method for electrocardiography (ECG) data analysis. Recently, various DL techniques have been utilized to classify arrhythmias, with one typical approach to developing a one-dimensional (1D) convolutional neural network (CNN) model to handle the ECG signals in the time domain. Although the CA classification in the time domain is very prevalent, current methods' performances are still not robust or satisfactory. This study aims to develop a solution for CA classification in two dimensions by introducing the recurrence plot (RP) combined with an Inception-ResNet-v2 network. The proposed method for nine types of CA classification was tested on the 1st China Physiological Signal Challenge 2018 dataset. During implementation, the optimal leads (lead II and lead aVR) were selected, and then 1D ECG segments were transformed into 2D texture images by the RP approach. These RP-based images as input signals were passed into the Inception-ResNet-v2 for CA classification. In the CPSC, Georgia, and the PTB_XL ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the RP-based method achieved an average F1-score of 0.8521, 0.8529, and 0.8862, respectively. The results suggested the excellent generalization ability of the proposed method. To further assess the performance of the proposed method, we compared the 2D RP-image-based solution with the published 1D ECG-based works on the same dataset. Also, it was compared with two traditional ECG transform into 2D image methods, including the time waveform of the ECG recordings and time-frequency images based on continuous wavelet transform (CWT). The proposed method achieved the highest average F1-score of 0.844, with only two leads of the 12-lead ECG original data, which outperformed other works. Therefore, the promising results indicate that the 2D RP-based method has a high clinical potential for CA classification using fewer lead ECG signals.
Collapse
Affiliation(s)
- Hua Zhang
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Chengyu Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Zhimin Zhang
- Science and Technology on Information Systems Engineering Laboratory, The 28th Research Institute of CETC, Nanjing, China
| | - Yujie Xing
- First Department of Cardiology, People's Hospital of Shaanxi Province, Xi'an, China
| | - Xinwen Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Ruiqing Dong
- Dushuhu Public Hospital Affiliated to Soochow University, Suzhou, China
| | - Yu He
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Olier I, Ortega-Martorell S, Pieroni M, Lip GYH. How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management. Cardiovasc Res 2021; 117:1700-1717. [PMID: 33982064 PMCID: PMC8477792 DOI: 10.1093/cvr/cvab169] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
There has been an exponential growth of artificial intelligence (AI) and machine learning (ML) publications aimed at advancing our understanding of atrial fibrillation (AF), which has been mainly driven by the confluence of two factors: the advances in deep neural networks (DeepNNs) and the availability of large, open access databases. It is observed that most of the attention has centred on applying ML for dvsetecting AF, particularly using electrocardiograms (ECGs) as the main data modality. Nearly a third of them used DeepNNs to minimize or eliminate the need for transforming the ECGs to extract features prior to ML modelling; however, we did not observe a significant advantage in following this approach. We also found a fraction of studies using other data modalities, and others centred in aims, such as risk prediction, AF management, and others. From the clinical perspective, AI/ML can help expand the utility of AF detection and risk prediction, especially for patients with additional comorbidities. The use of AI/ML for detection and risk prediction into applications and smart mobile health (mHealth) technology would enable ‘real time’ dynamic assessments. AI/ML could also adapt to treatment changes over time, as well as incident risk factors. Incorporation of a dynamic AI/ML model into mHealth technology would facilitate ‘real time’ assessment of stroke risk, facilitating mitigation of modifiable risk factors (e.g. blood pressure control). Overall, this would lead to an improvement in clinical care for patients with AF.
Collapse
Affiliation(s)
- Ivan Olier
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Sandra Ortega-Martorell
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Mark Pieroni
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
12
|
Wesselius FJ, van Schie MS, De Groot NMS, Hendriks RC. Digital biomarkers and algorithms for detection of atrial fibrillation using surface electrocardiograms: A systematic review. Comput Biol Med 2021; 133:104404. [PMID: 33951551 DOI: 10.1016/j.compbiomed.2021.104404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
AIMS Automated detection of atrial fibrillation (AF) in continuous rhythm registrations is essential in order to prevent complications and optimize treatment of AF. Many algorithms have been developed to detect AF in surface electrocardiograms (ECGs) during the past few years. The aim of this systematic review is to gain more insight into these available classification methods by discussing previously used digital biomarkers and algorithms and make recommendations for future research. METHODS On the 14th of September 2020, the PubMed database was searched for articles focusing on algorithms for AF detection in ECGs using the MeSH terms Atrial Fibrillation, Electrocardiography and Algorithms. Articles which solely focused on differentiation of types of rhythm disorders or prediction of AF termination were excluded. RESULTS The search resulted in 451 articles, of which 130 remained after full-text screening. Not only did the amount of research on methods for AF detection increase over the past years, but a trend towards more complex classification methods is observed. Furthermore, three different types of features can be distinguished: atrial features, ventricular features, and signal features. Although AF is an atrial disease, only 22% of the described methods use atrial features. CONCLUSION More and more studies focus on improving accuracy of classification methods for AF in ECGs. As a result, algorithms become increasingly complex and less well interpretable. Only a few studies focus on detecting atrial activity in the ECG. Developing innovative methods focusing on detection of atrial activity might provide accurate classifiers without compromising on transparency.
Collapse
Affiliation(s)
- Fons J Wesselius
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Richard C Hendriks
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
13
|
Choi BM, Yim JY, Shin H, Noh G. Novel Analgesic Index for Postoperative Pain Assessment Based on a Photoplethysmographic Spectrogram and Convolutional Neural Network: Observational Study. J Med Internet Res 2021; 23:e23920. [PMID: 33533723 PMCID: PMC7889419 DOI: 10.2196/23920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although commercially available analgesic indices based on biosignal processing have been used to quantify nociception during general anesthesia, their performance is low in conscious patients. Therefore, there is a need to develop a new analgesic index with improved performance to quantify postoperative pain in conscious patients. OBJECTIVE This study aimed to develop a new analgesic index using photoplethysmogram (PPG) spectrograms and a convolutional neural network (CNN) to objectively assess pain in conscious patients. METHODS PPGs were obtained from a group of surgical patients for 6 minutes both in the absence (preoperatively) and in the presence (postoperatively) of pain. Then, the PPG data of the latter 5 minutes were used for analysis. Based on the PPGs and a CNN, we developed a spectrogram-CNN index for pain assessment. The area under the curve (AUC) of the receiver-operating characteristic curve was measured to evaluate the performance of the 2 indices. RESULTS PPGs from 100 patients were used to develop the spectrogram-CNN index. When there was pain, the mean (95% CI) spectrogram-CNN index value increased significantly-baseline: 28.5 (24.2-30.7) versus recovery area: 65.7 (60.5-68.3); P<.01. The AUC and balanced accuracy were 0.76 and 71.4%, respectively. The spectrogram-CNN index cutoff value for detecting pain was 48, with a sensitivity of 68.3% and specificity of 73.8%. CONCLUSIONS Although there were limitations to the study design, we confirmed that the spectrogram-CNN index can efficiently detect postoperative pain in conscious patients. Further studies are required to assess the spectrogram-CNN index's feasibility and prevent overfitting to various populations, including patients under general anesthesia. TRIAL REGISTRATION Clinical Research Information Service KCT0002080; https://cris.nih.go.kr/cris/search/search_result_st01.jsp?seq=6638.
Collapse
Affiliation(s)
- Byung-Moon Choi
- Department of Anaesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Yeon Yim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Hangsik Shin
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Gyujeong Noh
- Department of Anaesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Skaria R, Parvaneh S, Zhou S, Kim J, Wanjiru S, Devers G, Konhilas J, Khalpey Z. Path to precision: prevention of post-operative atrial fibrillation. J Thorac Dis 2020; 12:2735-2746. [PMID: 32642182 PMCID: PMC7330352 DOI: 10.21037/jtd-19-3875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of post-operative atrial fibrillation (POAF) following open-heart surgery is a significant clinical and economic burden. Despite advancements in medical therapies, the incidence of POAF remains elevated at 25-40%. Early work focused on detecting arrhythmias from electrocardiograms as well as identifying pre-operative risk factors from medical records. However, further progress has been stagnant, and a deeper understanding of pathogenesis and significant influences is warranted. With the advent of more complex machine learning (ML) algorithms and high-throughput sequencing, we have an unprecedented ability to capture and predict POAF in real-time. Integration of multimodal heterogeneous data and application of ML can generate a paradigm shift for diagnosis and treatment. This will require a concerted effort to consolidate and streamline real-time data. Herein, we will review the current literature and emerging opportunities aimed at predictive targets and new insights into the mechanisms underlying long-term sequelae of POAF.
Collapse
Affiliation(s)
- Rinku Skaria
- University of Arizona, College of Medicine, Tucson, AZ, USA
| | | | - Sophia Zhou
- Philips Research North America, Cambridge, MA, USA
| | - James Kim
- University of Arizona, College of Medicine, Tucson, AZ, USA
| | | | | | - John Konhilas
- University of Arizona, College of Medicine, Tucson, AZ, USA
| | | |
Collapse
|
15
|
Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Comput Biol Med 2020; 122:103801. [PMID: 32658725 DOI: 10.1016/j.compbiomed.2020.103801] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals. OBJECTIVE This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives. METHODS We extracted papers that applied deep learning (deep neural network) models to ECG data that were published between January 1st of 2010 and February 29th of 2020 from Google Scholar, PubMed, and the Digital Bibliography & Library Project. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area. RESULTS The total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising. CONCLUSION The number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods. SIGNIFICANCE This paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions.
Collapse
Affiliation(s)
- Shenda Hong
- Department of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Yuxi Zhou
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.
| | - Junyuan Shang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.
| | - Cao Xiao
- Analytics Center of Excellence, IQVIA, Cambridge, USA.
| | - Jimeng Sun
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
16
|
Krasteva V, Ménétré S, Didon JP, Jekova I. Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2875. [PMID: 32438582 PMCID: PMC7285174 DOI: 10.3390/s20102875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
Deep neural networks (DNN) are state-of-the-art machine learning algorithms that can be learned to self-extract significant features of the electrocardiogram (ECG) and can generally provide high-output diagnostic accuracy if subjected to robust training and optimization on large datasets at high computational cost. So far, limited research and optimization of DNNs in shock advisory systems is found on large ECG arrhythmia databases from out-of-hospital cardiac arrests (OHCA). The objective of this study is to optimize the hyperparameters (HPs) of deep convolutional neural networks (CNN) for detection of shockable (Sh) and nonshockable (NSh) rhythms, and to validate the best HP settings for short and long analysis durations (2-10 s). Large numbers of (Sh + NSh) ECG samples were used for training (720 + 3170) and validation (739 + 5921) from Holters and defibrillators in OHCA. An end-to-end deep CNN architecture was implemented with one-lead raw ECG input layer (5 s, 125 Hz, 2.5 uV/LSB), configurable number of 5 to 23 hidden layers and output layer with diagnostic probability p ∈ [0: Sh,1: NSh]. The hidden layers contain N convolutional blocks × 3 layers (Conv1D (filters = Fi, kernel size = Ki), max-pooling (pool size = 2), dropout (rate = 0.3)), one global max-pooling and one dense layer. Random search optimization of HPs = {N, Fi, Ki}, i = 1, … N in a large grid of N = [1, 2, … 7], Fi = [5;50], Ki = [5;100] was performed. During training, the model with maximal balanced accuracy BAC = (Sensitivity + Specificity)/2 over 400 epochs was stored. The optimization principle is based on finding the common HPs space of a few top-ranked models and prediction of a robust HP setting by their median value. The optimal models for 1-7 CNN layers were trained with different learning rates LR = [10-5; 10-2] and the best model was finally validated on 2-10 s analysis durations. A number of 4216 random search models were trained. The optimal models with more than three convolutional layers did not exhibit substantial differences in performance BAC = (99.31-99.5%). Among them, the best model was found with {N = 5, Fi = {20, 15, 15, 10, 5}, Ki = {10, 10, 10, 10, 10}, 7521 trainable parameters} with maximal validation performance for 5-s analysis (BAC = 99.5%, Se = 99.6%, Sp = 99.4%) and tolerable drop in performance (<2% points) for very short 2-s analysis (BAC = 98.2%, Se = 97.6%, Sp = 98.7%). DNN application in future-generation shock advisory systems can improve the detection performance of Sh and NSh rhythms and can considerably shorten the analysis duration complying with resuscitation guidelines for minimal hands-off pauses.
Collapse
Affiliation(s)
- Vessela Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria;
| | - Sarah Ménétré
- Schiller Médical, 4 Rue Louis Pasteur, 67160 Wissembourg, France; (S.M.); (J.-P.D.)
| | - Jean-Philippe Didon
- Schiller Médical, 4 Rue Louis Pasteur, 67160 Wissembourg, France; (S.M.); (J.-P.D.)
| | - Irena Jekova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria;
| |
Collapse
|
17
|
Kleyko D, Osipov E, Wiklund U. A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017. Biomed Phys Eng Express 2020; 6:025010. [PMID: 33438636 DOI: 10.1088/2057-1976/ab6e1e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The 2017 PhysioNet/CinC Challenge focused on automatic classification of atrial fibrillation (AF) in short ECGs. This study aimed to evaluate the use of the data and results from the challenge for detection of AF in longer ECGs, taken from three other PhysioNet datasets. APPROACH The used data-driven models were based on features extracted from ECG recordings, calculated according to three solutions from the challenge. A Random Forest classifier was trained with the data from the challenge. The performance was evaluated on all non-overlapping 30 s segments in all recordings from three MIT-BIH datasets. Fifty-six models were trained using different feature sets, both before and after applying three feature reduction techniques. MAIN RESULTS Based on rhythm annotations, the AF proportion was 0.00 in the MIT-BIH Normal Sinus Rhythm (N = 46083 segments), 0.10 in the MIT-BIH Arrhythmia (N = 2880), and 0.41 in the MIT-BIH Atrial Fibrillation (N = 28104) dataset. For the best performing model, the corresponding detected proportions of AF were 0.00, 0.11 and 0.36 using all features, and 0.01, 0.10 and 0.38 when using the 15 best performing features. SIGNIFICANCE The results obtained on the MIT-BIH datasets indicate that the training data and solutions from the 2017 Physionet/Cinc Challenge can be useful tools for developing robust AF detectors also in longer ECG recordings, even when using a low number of carefully selected features. The use of feature selection allows significantly reducing the number of features while preserving the classification performance, which can be important when building low-complexity AF classifiers on ECG devices with constrained computational and energy resources.
Collapse
Affiliation(s)
- Denis Kleyko
- Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
| | | | | |
Collapse
|
18
|
Cai W, Chen Y, Guo J, Han B, Shi Y, Ji L, Wang J, Zhang G, Luo J. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Comput Biol Med 2020; 116:103378. [DOI: 10.1016/j.compbiomed.2019.103378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
|
19
|
Parvaneh S, Rubin J, Babaeizadeh S, Xu-Wilson M. Cardiac arrhythmia detection using deep learning: A review. J Electrocardiol 2019; 57S:S70-S74. [PMID: 31416598 DOI: 10.1016/j.jelectrocard.2019.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/18/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Due to its simplicity and low cost, analyzing an electrocardiogram (ECG) is the most common technique for detecting cardiac arrhythmia. The massive amount of ECG data collected every day, in home and hospital, may preclude data review by human operators/technicians. Therefore, several methods are proposed for either fully automatic arrhythmia detection or event selection for further verification by human experts. Traditional machine learning approaches have made significant progress in the past years. However, those methods rely on hand-crafted feature extraction, which requires in-depth domain knowledge and preprocessing of the signal (e.g., beat detection). This, plus the high variability in wave morphology among patients and the presence of noise, make it challenging for computerized interpretation to achieve high accuracy. Recent advances in deep learning make it possible to perform automatic high-level feature extraction and classification. Therefore, deep learning approaches have gained interest in arrhythmia detection. In this work, we reviewed the recent advancement of deep learning methods for automatic arrhythmia detection. We summarized existing literature from five aspects: utilized dataset, application, type of input data, model architecture, and performance evaluation. We also reported limitations of reviewed papers and potential future opportunities.
Collapse
Affiliation(s)
| | | | - Saeed Babaeizadeh
- Advanced Algorithm Research Center, Philips Healthcare, Andover, MA, USA
| | | |
Collapse
|
20
|
Li Q, Liu C, Li Q, Shashikumar SP, Nemati S, Shen Z, Clifford GD. Ventricular ectopic beat detection using a wavelet transform and a convolutional neural network. Physiol Meas 2019; 40:055002. [PMID: 30970338 PMCID: PMC11418028 DOI: 10.1088/1361-6579/ab17f0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Ventricular contractions in healthy individuals normally follow the contractions of atria to facilitate more efficient pump action and cardiac output. With a ventricular ectopic beat (VEB), volume within the ventricles are pumped to the body's vessels before receiving blood from atria, thus causing inefficient blood circulation. VEBs tend to cause perturbations in the instantaneous heart rate time series, making the analysis of heart rate variability inappropriate around such events, or requiring special treatment (such as signal averaging). Moreover, VEB frequency can be indicative of life-threatening problems. However, VEBs can often mimic artifacts both in morphology and timing. Identification of VEBs is therefore an important unsolved problem. The aim of this study is to introduce a method of wavelet transform in combination with deep learning network for the classification of VEBs. APPROACH We proposed a method to automatically discriminate VEB beats from other beats and artifacts with the use of wavelet transform of the electrocardiogram (ECG) and a convolutional neural network (CNN). Three types of wavelets (Morlet wavelet, Paul wavelet and Gaussian derivative) were used to transform segments of single-channel (1D) ECG waveforms to two-dimensional (2D) time-frequency 'images'. The 2D time-frequency images were then passed into a CNN to optimize the convolutional filters and classification. Ten-fold cross validation was used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH). The American Heart Association (AHA) database was then used as an independent dataset to evaluate the trained network. MAIN RESULTS Ten-fold cross validation results on MIT-BIH showed that the proposed algorithm with Paul wavelet achieved an overall F1 score of 84.94% and accuracy of 97.96% on out of sample validation. Independent test on AHA resulted in an F1 score of 84.96% and accuracy of 97.36%. SIGNIFICANCE The trained network possessed exceptional transferability across databases and generalization to unseen data.
Collapse
Affiliation(s)
- Qichen Li
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom. Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
| | | | | | | | | | | | | |
Collapse
|
21
|
Hong S, Zhou Y, Wu M, Shang J, Wang Q, Li H, Xie J. Combining deep neural networks and engineered features for cardiac arrhythmia detection from ECG recordings. Physiol Meas 2019; 40:054009. [DOI: 10.1088/1361-6579/ab15a2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Ghaffari A, Madani N. Atrial fibrillation identification based on a deep transfer learning approach. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Cao XC, Yao B, Chen BQ. Atrial Fibrillation Detection Using an Improved Multi-Scale Decomposition Enhanced Residual Convolutional Neural Network. IEEE ACCESS 2019; 7:89152-89161. [DOI: 10.1109/access.2019.2926749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|