1
|
Yang G, Xia J, Dai X, Zhao H, Gao W, Ding W, Tao X, Zhu L. A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors. Int J Nanomedicine 2024; 19:527-540. [PMID: 38260241 PMCID: PMC10802178 DOI: 10.2147/ijn.s444061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Introduction Magnetic resonance imaging (MRI) is an important tool for the accurate diagnosis of malignant tumors in clinical settings. However, the lack of tumor-specific MRI contrast agents limits diagnostic accuracy. Methods Herein, we developed αv integrin receptor-targeting multi-crystalline manganese oxide (MCMO) as a novel MRI contrast agent for accurate diagnosis of tumors by coupling iRGD cyclopeptide PEGylation polymer onto the surface of MCMO (iRGD-pMCMO). Results The MCMO consisted of numerous small crystals and exhibited an oval structure of 200 nm in size. The iRGD-pMCMO actively recognizes tumor cells and effectively accumulates at the tumor site, consequently releasing abundant Mn2+ ions in a weakly acidic and high-GSH-expressing tumor microenvironment. Subsequently, Mn2+ ions interact with cellular GSH to form Mn-GSH chelates, enabling efficient T1-weighted MR contrast imaging. In vivo experiments indicated that iRGD-pMCMO significantly improved T1-weighted images, achieving an accurate diagnosis of subcutaneous and orthotopic tumors. The results verified that the T1 contrast effect of iRGD-pMCMO was closely associated with the expression of GSH in tumor cells. Conclusion Altogether, the novel tumor-targeting, highly sensitive MRI contrast agent developed in this study can improve the accuracy of MRI for tumor diagnosis.
Collapse
Affiliation(s)
- Gongxin Yang
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Jikai Xia
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Xiaoqing Dai
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Hongbo Zhao
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Weiqing Gao
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Weilong Ding
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| | - Ling Zhu
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People’s Republic of China
| |
Collapse
|
2
|
Lamichhane G, Acharya A, Marahatha R, Modi B, Paudel R, Adhikari A, Raut BK, Aryal S, Parajuli N. Microplastics in environment: global concern, challenges, and controlling measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:4673-4694. [PMID: 35638092 PMCID: PMC9135010 DOI: 10.1007/s13762-022-04261-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 03/31/2022] [Accepted: 04/23/2022] [Indexed: 05/02/2023]
Abstract
Plastic pollution in various forms has emerged as the most severe environmental threat. Small plastic chunks, such as microplastics and nanoplastics derived from primary and secondary sources, are a major concern worldwide due to their adverse effects on the environment and public health. Several years have been spent developing robust spectroscopic techniques that should be considered top-notch; however, researchers are still trying to find efficient and straightforward methods for the analysis of microplastics but have yet to develop a viable solution. Because of the small size of these degraded plastics, they have been found in various species, from human brains to blood and digestive systems. Several pollution-controlling methods have been tested in recent years, and these methods are prominent and need to be developed. Bacterial degradation, sunlight-driven photocatalyst, fuels, and biodegradable plastics could be game-changers in future research on plastic pollution control. However, recent fledgling steps in controlling methods appear insufficient due to widespread contamination. As a result, proper regulation of environmental microplastics is a significant challenge, and the most equitable way to manage plastic pollution. Therefore, this paper discusses the current state of microplastics, some novel and well-known identification techniques, strategies for overcoming microplastic effects, and needed solutions to mitigate this planetary pollution. This review article, we believe, will fill a void in the field of plastic identification and pollution mitigation research.
Collapse
Affiliation(s)
- G. Lamichhane
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618 Nepal
| | - A. Acharya
- Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane University, Matsue, Japan
| | - R. Marahatha
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618 Nepal
| | - B. Modi
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618 Nepal
| | - R. Paudel
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618 Nepal
| | - A. Adhikari
- Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - B. K. Raut
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618 Nepal
| | - S. Aryal
- Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - N. Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618 Nepal
| |
Collapse
|
3
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
4
|
Petroli A, Petroli M, Romagnoli M, Geoghegan M. Determination of the rate-dependent adhesion of polydimethylsiloxane using an atomic force microscope. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Venkatesh RB, Lee D. Interfacial Friction Controls the Motion of Confined Polymers in the Pores of Nanoparticle Packings. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Bharath Venkatesh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Wu C, Tang R, Li H, Liu X, Fu L, Yu Y, Wan C. Interaction between organic matter and tetracycline in river sediments in cold regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24941-24950. [PMID: 34826078 DOI: 10.1007/s11356-021-17682-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the interaction between river sediments collected from cold regions and typical antibiotics was investigated. The results show that tetracycline addition to the sediment can promote the fluorescence quenching of protein-like, marine humic acid, and humic acid-like substances. The degree of quenching increased with the increase of tetracycline concentration (0-80 μM). The fluorescence quenching degree of protein-like, marine humic acid, and humic acid-like substances is as high as 94.76%, 70.19%, and 77.80%, respectively. In addition, the process belongs to static quenching, and a ground-state complex is formed during the quenching reaction. The number of binding sites of tetracycline and protein-like, marine humic acid, and humic acid-like substances is 1.30, 1.51, and 1.34, respectively. The order of the strength of the formed complex is marine-like humic acid, protein-like, and humic acid-like substrates. The secondary structure of protein-like substrate in the sediment organic matter includes three types: aggregated strands, β-Sheet, and α-helix; and the content ratios are 10.23%, 8.33%, and 81.44%, respectively. When the concentration of tetracycline increased to 80 μM, the content of β-sheet increased significantly, while the content of α-helix decreased significantly. 2D-COS analysis showed that the reaction sequence of organic functional groups and tetracycline in the sediment was phenolic hydroxyl group, fatty group of amino acid structure, nonfluorescent polysaccharide, and protein-like α-helix substrates. After tetracycline interacts with water-extractable organic matters (WEOM), the structure of WEOM becomes compact, and its adsorption capacity on the surface of minerals is significantly reduced, resulting in an increase in the fluidity of tetracycline in the water environment.
Collapse
Affiliation(s)
- Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Huiqi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Liya Fu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yin Yu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
7
|
Wu C, Fu L, Wang Y, Wan C. Real-time changes of the adsorption process and conformation of marine dissolved organic matters on the solid-liquid interface. CHEMOSPHERE 2022; 289:133140. [PMID: 34863728 DOI: 10.1016/j.chemosphere.2021.133140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
In this study, the adsorption characteristics of marine dissolved organic matters (MDOMs) on the solid-liquid interface in the coastal waters was investigated. The results showed that the organic macromolecules with adsorption ability in MDOMs are not rigid molecules. However, the macromolecules have viscoelasticity properties. At different dilution ratios, the MDOMs adsorption process includes rapid (0-200 s) and slow adsorption (200 s later) periods. MDOMs adsorption in the solid-liquid interface is a dynamic process in which adsorption and hydration occur simultaneously. MDOMs concentration is an important driving force for adsorption. The three macromolecules of acid polysaccharides, protein-like, and polycarboxylate-type humic acids in MDOMs are rich in functional groups and they have the ability to absorb to solid surface. Acidic polysaccharides exhibit a sustained adsorption ability, while the adsorption of other macromolecules occurred only in the initial rapid adsorption period. In addition, the acid polysaccharides show weak thixotropy during the adsorption process. It would cause the stretching of macromolecular structure of the adsorption layer, enhancing the hydration of the adsorption layer. The study shows the adsorption process of MDOMs at the solid-liquid interface and the structural characteristics of the adsorption layer. It can provide helpful information for the inhibition and removal of MDOMs pollution during the actual development of marine resources.
Collapse
Affiliation(s)
- Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liya Fu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Wang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Esmaeilzadeh Z, Karimi M, Mousavi Shoushtari A, Javanbakht M. The effect of polydopamine coated multi‐walled carbon nanotube on the wettability of sulfonated poly(ether ether ketone) nanocomposite as a proton exchange membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Esmaeilzadeh
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Mohammad Karimi
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Ahmad Mousavi Shoushtari
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Mehran Javanbakht
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| |
Collapse
|
9
|
Morales-García AL, Walton R, Blakeman JT, Banwart SA, Harding JH, Geoghegan M, Freeman CL, Rolfe SA. The Role of Extracellular DNA in Microbial Attachment to Oxidized Silicon Surfaces in the Presence of Ca 2+ and Na . LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9838-9850. [PMID: 34347486 PMCID: PMC8397393 DOI: 10.1021/acs.langmuir.1c01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption.
Collapse
Affiliation(s)
- Ana L. Morales-García
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Rachel Walton
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
- Department
of Animal and Plant Sciences, The University
of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jamie T. Blakeman
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Steven A. Banwart
- Department
of Civil and Structural Engineering, The
University of Sheffield, Sheffield S3 7HQ, U.K.
| | - John H. Harding
- Department
of Materials Science and Engineering, The
University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Mark Geoghegan
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Colin L. Freeman
- Department
of Materials Science and Engineering, The
University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Stephen A. Rolfe
- Department
of Animal and Plant Sciences, The University
of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| |
Collapse
|
10
|
Straub AJ, Scherag FD, Kim HI, Steiner MS, Brandstetter T, Rühe J. "CHicable" and "Clickable" Copolymers for Network Formation and Surface Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6510-6520. [PMID: 34003660 DOI: 10.1021/acs.langmuir.1c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we present the generation of novel, multifunctional polymer networks through a combination of C,H-insertion cross-linking (CHic) and click chemistry. To this, copolymers consisting of hydrophilic N,N-dimethylacrylamide as matrix component and repeat units containing azide moieties, as well as benzophenone or anthraquinone groups, are generated. The benzophenone or anthraquinone groups allow photo-cross-linking, surface attachment or covalent immobilization of adjacent (bio)molecules through CHic reactions. The azide moieties either can react with available alkynes through conventional click reactions or can be activated to form nitrenes, which can also undergo CHic reactions. By choosing appropriate reaction conditions, the same polymer can be used to follow very different reaction paths, opening up a plethora of choices for the generation of functional polymer networks. In the exemplary presented case ("CHic-Click"), irradiation of the copolymers with UV-A light (λirr = 365 nm) leads to cross-linking (network formation) and surface attachment simultaneously. The azide units remain intact during this cross-linking step, and alkyne-modified (bio)molecules can be bound through click reactions. Biofunctionalization of the polymer network with alkynylated streptavidin, followed by application of biotin-conjugated antibody and a model analyte, highlights the potential of these surface architectures as a toolbox which can be adapted for diverse bioanalytical applications.
Collapse
Affiliation(s)
- Alexander J Straub
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Frank D Scherag
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Hye In Kim
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Mark-Steven Steiner
- Microcoat Biotechnologie GmbH, Am Neuland 3, 82347 Bernried am Starnberger See, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
11
|
Alfhaid L, Williams NH, Geoghegan M. Adhesion between oppositely charged polyelectrolytes in salt solution. J Appl Polym Sci 2020. [DOI: 10.1002/app.49130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Latifah Alfhaid
- Department of Physics and AstronomyUniversity of Sheffield Sheffield UK
- Department of Physics, College of ScienceUniversity of Ha'il Hail Saudi Arabia
| | | | - Mark Geoghegan
- Department of Physics and AstronomyUniversity of Sheffield Sheffield UK
| |
Collapse
|
12
|
LaFreniere JMJ, Roberge EJ, Halpern JM. Reorientation of Polymers in an Applied Electric Field for Electrochemical Sensors. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:037556. [PMID: 32265575 PMCID: PMC7138228 DOI: 10.1149/1945-7111/ab6cfe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This mini review investigates the relationship and interactions of polymers under an applied electric field (AEF) for sensor applications. Understanding how and why polymers are reoriented and manipulated by under an AEF is essential for future growth in polymer-based electrochemical sensors. Examples of polymers that can be manipulated in an AEF for sensor applications are provided. Current methods of monitoring polymer reorientation will be described, but new techniques are needed characterize polymer response to various AEF stimuli. The unique and reproducible stimuli response of polymers elicited by an AEF has significant potential for growth in the sensing community.
Collapse
Affiliation(s)
| | - Emma J. Roberge
- Department of Chemical Engineering, University of New Hampshire, Durham, USA
| | - Jeffrey M. Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, USA
| |
Collapse
|
13
|
Hall AR, Blakeman JT, Eissa AM, Chapman P, Morales-García AL, Stennett L, Martin O, Giraud E, Dockrell DH, Cameron NR, Wiese M, Yakob L, Rogers ME, Geoghegan M. Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors. Chem Sci 2020. [DOI: 10.1039/d0sc03298k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Force spectroscopy was used to measure the adhesion of Leishmania to synthetic mimics of galectins on the sand fly midgut.
Collapse
|
14
|
Jones AOF, Resel R, Schrode B, Machado-Charry E, Röthel C, Kunert B, Salzmann I, Kontturi E, Reishofer D, Spirk S. Structural Order in Cellulose Thin Films Prepared from a Trimethylsilyl Precursor. Biomacromolecules 2019; 21:653-659. [PMID: 31774663 DOI: 10.1021/acs.biomac.9b01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biopolymer cellulose is investigated in terms of the crystallographic order within thin films. The films were prepared by spin-coating of a trimethylsilyl cellulose precursor followed by an exposure to HCl vapors; two different source materials were used. Careful precharacterization of the films was performed by infrared spectroscopy and atomic force microscopy. Subsequently, the films were investigated by grazing incidence X-ray diffraction using synchrotron radiation. The results showed broad diffraction peaks, indicating a rather short correlation length of the molecular packing in the range of a few nanometers. The analysis of the diffraction patterns was based on the known structures of crystalline cellulose, as the observed peak pattern was comparable to cellulose phase II and phase III. The dominant fraction of the film is formed by two different types of layers, which are oriented parallel to the substrate surface. The stacking of the layers results in a one-dimensional crystallographic order with a defined interlayer distance of either 7.3 or 4.2 Å. As a consequence, two different preferred orientations of the polymer chains are observed. In both cases, polymer chain axes are aligned parallel to the substrate surface, and the orientation of the cellulose molecules are concluded to be either edge-on or flat-on. A minor fraction of the cellulose molecules form nanocrystals that are randomly distributed within the films. In this case, the molecular packing density was found to be smaller in comparison to the known crystalline phases of cellulose.
Collapse
Affiliation(s)
- Andrew O F Jones
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Roland Resel
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Benedikt Schrode
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Eduardo Machado-Charry
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Christian Röthel
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria.,Institute for Pharmaceutical Sciences, Department of Pharmaceutical Technology , Karl-Franzens University of Graz , 8010 Graz , Austria
| | - Birgit Kunert
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Ingo Salzmann
- Department of Physics, Department of Chemistry and Biochemistry , Concordia University , H4B 1R6 Montréal , Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16300, 00076 Aalto , Finland
| | - David Reishofer
- Institute of Paper, Pulp and Fiber Technology , Graz University of Technology , 8010 Graz , Austria
| | - Stefan Spirk
- Institute of Paper, Pulp and Fiber Technology , Graz University of Technology , 8010 Graz , Austria
| |
Collapse
|
15
|
Mouhamad Y, Mokarian-Tabari P, Jones RA, Geoghegan M. Application of mean-field theory to the spin casting of polystyrene and poly(methyl methacrylate) blend films from toluene. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Kennelly TM, Li Y, Cao Y, Qwarnstrom EE, Geoghegan M. Distinct Binding Interactions of α 5β 1-Integrin and Proteoglycans with Fibronectin. Biophys J 2019; 117:688-695. [PMID: 31337547 PMCID: PMC6712418 DOI: 10.1016/j.bpj.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dynamic single-molecule force spectroscopy was performed to monitor the unbinding of fibronectin with the proteoglycans syndecan-4 (SDC4) and decorin and to compare this with the unbinding characteristics of α5β1-integrin. A single energy barrier was sufficient to describe the unbinding of both SDC4 and decorin from fibronectin, whereas two barriers were observed for the dissociation of α5β1-integrin from fibronectin. The outer (high-affinity) barriers in the interactions of fibronectin with α5β1-integrin and SDC4 are characterized by larger barrier heights and widths and slower dissociation rates than those of the inner (low-affinity) barriers in the interactions of fibronectin with α5β1-integrin and decorin. These results indicate that SDC4 and (ultimately) α5β1-integrin have the ability to withstand deformation in their interactions with fibronectin, whereas the decorin-fibronectin interaction is considerably more brittle.
Collapse
Affiliation(s)
- Thomas M Kennelly
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yiran Li
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yi Cao
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Eva E Qwarnstrom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
17
|
Giunta G, Carbone P. Cross-over in the dynamics of polymer confined between two liquids of different viscosity. Interface Focus 2019; 9:20180074. [PMID: 31065342 PMCID: PMC6501349 DOI: 10.1098/rsfs.2018.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 11/12/2022] Open
Abstract
Using molecular dynamics simulations, we analysed the polymer dynamics of chains of different molecular weights entrapped at the interface between two immiscible liquids. We showed that on increasing the viscosity of one of the two liquids the dynamic behaviour of the chain changes from a Zimm-like dynamics typical of dilute polymer solutions to a Rouse-like dynamics where hydrodynamic interactions are screened. We observed that when the polymer is in contact with a high viscosity liquid, the number of solvent molecules close to the polymer beads is reduced and ascribed the screening effect to this reduced number of polymer-solvent contacts. For the longest chain simulated, we calculated the distribution of loop length and compared the results with the theoretical distribution developed for solid/liquid interfaces. We showed that the polymer tends to form loops (although flat against the interface) and that the theory works reasonably well also for liquid/liquid interfaces.
Collapse
Affiliation(s)
- Giuliana Giunta
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
18
|
Clarkson CG, Johnson A, Leggett GJ, Geoghegan M. Slow polymer diffusion on brush-patterned surfaces in aqueous solution. NANOSCALE 2019; 11:6052-6061. [PMID: 30869707 DOI: 10.1039/c9nr00341j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A model system for the investigation of diffusional transport in compartmentalized nanosystems is described. Arrays of "corrals" enclosed within poly[oligo(ethylene glycol)methyl ether methacrylate] (POEGMA) "walls" were fabricated using double-exposure interferometric lithography to deprotect aminosilane films protected by a nitrophenyl group. In exposed regions, removal of the nitrophenyl group enabled attachment of an initiator for the atom-transfer radical polymerization of end-grafted POEGMA (brushes). Diffusion coefficients for poly(ethylene glycol) in these corrals were obtained by fluorescence correlation spectroscopy. Two modes of surface diffusion were observed: one which is similar to diffusion on the unpatterned surface and a very slow mode of surface diffusion that becomes increasingly important as confinement increases. Diffusion within the POEGMA brushes does not significantly contribute to the results.
Collapse
|