1
|
Zdimal AM, Di Dio G, Liu W, Aftab T, Collins T, Colin R, Shrivastava A. Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions. THE ISME JOURNAL 2025; 19:wrae263. [PMID: 39750029 PMCID: PMC11773418 DOI: 10.1093/ismejo/wrae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.
Collapse
Affiliation(s)
- Amanda M Zdimal
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Giacomo Di Dio
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Wanxiang Liu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Tanya Aftab
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Taryn Collins
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Remy Colin
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Abhishek Shrivastava
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
2
|
Zdimal AM, Dio GD, Liu W, Aftab T, Collins T, Colin R, Shrivastava A. Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614802. [PMID: 39386520 PMCID: PMC11463409 DOI: 10.1101/2024.09.24.614802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The bacterial Type 9 Secretion System (T9SS) is essential for the development of periodontal diseases and Bacteroidetes gliding motility. T9SS-driven motile bacteria, abundant within the human oral microbiota, transport non-motile oral microbes and bacteriophages as cargo, shaping the spatial structure of polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.
Collapse
|
3
|
Deblais A, Prathyusha KR, Sinaasappel R, Tuazon H, Tiwari I, Patil VP, Bhamla MS. Worm blobs as entangled living polymers: from topological active matter to flexible soft robot collectives. SOFT MATTER 2023; 19:7057-7069. [PMID: 37706563 PMCID: PMC10523214 DOI: 10.1039/d3sm00542a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Recently, the study of long, slender living worms has gained attention due to their unique ability to form highly entangled physical structures, exhibiting emergent behaviors. These organisms can assemble into an active three-dimensional soft entity referred to as the "blob", which exhibits both solid-like and liquid-like properties. This blob can respond to external stimuli such as light, to move or change shape. In this perspective article, we acknowledge the extensive and rich history of polymer physics, while illustrating how these living worms provide a fascinating experimental platform for investigating the physics of active, polymer-like entities. The combination of activity, long aspect ratio, and entanglement in these worms gives rise to a diverse range of emergent behaviors. By understanding the intricate dynamics of the worm blob, we could potentially stimulate further research into the behavior of entangled active polymers, and guide the advancement of synthetic topological active matter and bioinspired tangling soft robot collectives.
Collapse
Affiliation(s)
- Antoine Deblais
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - K R Prathyusha
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Rosa Sinaasappel
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - Harry Tuazon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Ishant Tiwari
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Vats A, Yadav PK, Banerjee V, Puri S. Symbiotic dynamics in living liquid crystals. Phys Rev E 2023; 108:024701. [PMID: 37723723 DOI: 10.1103/physreve.108.024701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 09/20/2023]
Abstract
An amalgam of nematic liquid crystals and active matter, referred to as living liquid crystals, is a promising self-healing material with futuristic applications for targeted delivery of information and microcargo. We provide a phenomenological model to study the symbiotic pattern dynamics in this contemporary system using the Toner-Tu model for active matter (AM), the Landau-de Gennes free energy for liquid crystals (LCs), and an experimentally motivated coupling term that favours coalignment of the active and nematic components. Our extensive theoretical studies unfold two novel steady states, chimeras and solitons, with sharp regions of distinct orientational order that sweep through the coupled system in synchrony. The induced dynamics in the passive nematic is unprecedented. We show that the symbiotic dynamics of the AM and LC components can be exploited to induce and manipulate order in an otherwise disordered system.
Collapse
Affiliation(s)
- Aditya Vats
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pradeep Kumar Yadav
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Varsha Banerjee
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
5
|
Aranson IS. Bacterial active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076601. [PMID: 35605446 DOI: 10.1088/1361-6633/ac723d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
6
|
A particle-field approach bridges phase separation and collective motion in active matter. Nat Commun 2020; 11:5365. [PMID: 33097711 PMCID: PMC7584633 DOI: 10.1038/s41467-020-18978-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media. Interacting self-propelled particles exhibit phase separation or collective motion depending on particle shape. A unified theory connecting these paradigms represents a major challenge in active matter, which the authors address here by modeling active particles as continuum fields.
Collapse
|
7
|
Be’er A, Ariel G. A statistical physics view of swarming bacteria. MOVEMENT ECOLOGY 2019; 7:9. [PMID: 30923619 PMCID: PMC6419441 DOI: 10.1186/s40462-019-0153-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 05/18/2023]
Abstract
Bacterial swarming is a collective mode of motion in which cells migrate rapidly over surfaces, forming dynamic patterns of whirls and jets. This review presents a physical point of view of swarming bacteria, with an emphasis on the statistical properties of the swarm dynamics as observed in experiments. The basic physical principles underlying the swarm and their relation to contemporary theories of collective motion and active matter are reviewed and discussed in the context of the biological properties of swarming cells. We suggest a paradigm according to which bacteria have optimized some of their physical properties as a strategy for rapid surface translocation. In other words, cells take advantage of favorable physics, enabling efficient expansion that enhances survival under harsh conditions.
Collapse
Affiliation(s)
- Avraham Be’er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| |
Collapse
|
8
|
Abstract
Active matter is a wide class of nonequilibrium systems consisting of interacting self-propelled agents transducing the energy stored in the environment into mechanical motion. Numerous examples range from microscopic cytoskeletal filaments and swimming organisms (bacteria and unicellular algae), synthetic catalytic nanomotors, colloidal self-propelled Janus particles, to macroscopic bird flocks, fish schools, and even human crowds. Active matter demonstrates a remarkable tendency toward self-organization and development of collective states with the long-range spatial order. Furthermore, active materials exhibit properties that are not present in traditional materials like plastics or ceramics: self-repair, shape change, and adaptation. A suspension of microscopic swimmers, such as motile bacteria or self-propelled colloids (active suspensions), is possibly the simplest and the most explored realization of active matter. Recent studies of active suspensions revealed a wealth of unexpected behaviors, from a dramatic reduction of the effective viscosity, enhanced mixing and self-diffusion, rectification of chaotic motion, to artificial rheotaxis (drift against the imposed flow) and cross-stream migration. To date, most of the studies of active matter are performed in isotropic suspending medium, like water with the addition of some "fuel", e.g., nutrient for bacteria or H2O2 for catalytic bimetallic AuPt nanorods. A highly structured anisotropic suspending medium represented by lyotropic liquid crystal (water-soluble) opens enormous opportunities to control and manipulate active matter. Liquid crystals exhibit properties intermediate between solid and liquids; they may flow like a liquid but respond to deformations as a solid due to a crystal-like orientation of molecules. Liquid crystals doped by a small amount of active component represent a new class of composite materials (living liquid crystals or LLCs) with unusual mechanical and optical properties. LLCs demonstrate a variety of highly organized dynamic collective states, spontaneous formation of dynamic textures of topological defects (singularities of local molecular orientation), controlled and reconfigurable transport of cargo particles, manipulation of individual trajectories of microswimmers, and many others. Besides insights into fundamental mechanisms governing active materials, living liquid crystals may have intriguing applications, such as the design of new classes of soft adaptive bioinspired materials capable to respond to physical and chemical stimuli, such as light, magnetic, and electric fields, mechanical shear, airborne pollutants, and bacterial toxins. This Account details the most recent developments in the field of LLCs and discusses how the anisotropy of liquid crystals can be harnessed to control and manipulate active materials.
Collapse
Affiliation(s)
- Igor S. Aranson
- Departments of Biomedical Engineering, Chemistry and Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Peruani F, Aranson IS. Cold Active Motion: How Time-Independent Disorder Affects the Motion of Self-Propelled Agents. PHYSICAL REVIEW LETTERS 2018; 120:238101. [PMID: 29932716 DOI: 10.1103/physrevlett.120.238101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Assemblages of self-propelled particles, often termed active matter, exhibit collective behavior due to competition between neighbor alignment and noise-induced decoherence. However, very little is known of how the quenched (i.e., time-independent) disorder impacts active motion. Here we report on the effects of quenched disorder on the dynamics of self-propelled point particles. We identified three major types of quenched disorder relevant in the context of active matter: random torque, force, and stress. We demonstrate that even in the absence of external fluctuations ("cold active matter"), quenched disorder results in nontrivial dynamic phases not present in their "hot" counterpart. In particular, by analyzing when the equations of motion exhibit a Hamiltonian structure and when attractors may be present, we identify in which scenarios particle trapping, i.e., the asymptotic convergence of particle trajectories to bounded areas in space ("traps"), can and cannot occur. Our study provides new fundamental insights into active systems realized by self-propelled particles on natural and synthetic disordered substrates.
Collapse
Affiliation(s)
- Fernando Peruani
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| | - Igor S Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA and Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
10
|
Duman Ö, Isele-Holder RE, Elgeti J, Gompper G. Collective dynamics of self-propelled semiflexible filaments. SOFT MATTER 2018; 14:4483-4494. [PMID: 29808191 DOI: 10.1039/c8sm00282g] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The collective behavior of active semiflexible filaments is studied with a model of tangentially driven self-propelled worm-like chains. The combination of excluded-volume interactions and self-propulsion leads to several distinct dynamic phases as a function of bending rigidity, activity, and aspect ratio of individual filaments. We consider first the case of intermediate filament density. For high-aspect-ratio filaments, we identify a transition with increasing propulsion from a state of free-swimming filaments to a state of spiraled filaments with nearly frozen translational motion. For lower aspect ratios, this gas-of-spirals phase is suppressed with growing density due to filament collisions; instead, filaments form clusters similar to self-propelled rods. As activity increases, finite bending rigidity strongly effects the dynamics and phase behavior. Flexible filaments form small and transient clusters, while stiffer filaments organize into giant clusters, similarly to self-propelled rods, but with a reentrant phase behavior from giant to smaller clusters as activity becomes large enough to bend the filaments. For high filament densities, we identify a nearly frozen jamming state at low activities, a nematic laning state at intermediate activities, and an active-turbulence state at high activities. The latter state is characterized by a power-law decay of the energy spectrum as a function of wave number. The resulting phase diagrams encapsulate tunable non-equilibrium steady states that can be used in the organization of living matter.
Collapse
Affiliation(s)
- Özer Duman
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forchungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | | | | | | |
Collapse
|
11
|
Eberl H, Jalbert E, Dumitrache A, Wolfaardt G. A spatially explicit model of inverse colony formation of cellulolytic biofilms. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Patra P, Kissoon K, Cornejo I, Kaplan HB, Igoshin OA. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production. PLoS Comput Biol 2016; 12:e1005010. [PMID: 27362260 PMCID: PMC4928896 DOI: 10.1371/journal.pcbi.1005010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. Collective motility is a key mechanism bacteria use to self-organize into multicellular structures and to adapt to various environments. An important example of such behavior is social (S) motility in the gram-negative bacterium Myxococcus xanthus. S-motile cells are restricted to movement in groups and do not move as individual cells. S-motility is powered by type IV pili (TFP)–multi-subunit filaments, which extrude from the cell poles, adhere to the substrate and retract, pulling the cell forward. TFP retraction or adhesion is suggested to be triggered by extracellular exopolysaccharides (EPS) deposited by cells on the substrate. As individual cells synthesize both pili and EPS, it is unclear why S-motile cells only exhibit group movement. Moreover, the experimentally observed initial cell-density dependence of S-motility remains unexplained. To understand these phenomena, we developed a mathematical model for the colony expansion of S-motile cells. Our model hypothesizes that the EPS level regulates the TFP activity that initiates collective cell movements. With this assumption, the model quantitatively matches the density-dependent expansion rate. Moreover, the model predicts two phases during colony expansion: an initial density-dependent lag phase with a slow expansion rate, followed by a faster expansion phase with a density-independent rate. These model predictions were confirmed by long-term colony expansion experiments.
Collapse
Affiliation(s)
- Pintu Patra
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Kimberley Kissoon
- Department of Natural Sciences, Del Mar College, Corpus Christi, Texas, United States of America
| | - Isabel Cornejo
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas, United States of America
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Balagam R, Igoshin OA. Mechanism for Collective Cell Alignment in Myxococcus xanthus Bacteria. PLoS Comput Biol 2015; 11:e1004474. [PMID: 26308508 PMCID: PMC4550276 DOI: 10.1371/journal.pcbi.1004474] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Myxococcus xanthus cells self-organize into aligned groups, clusters, at various stages of their lifecycle. Formation of these clusters is crucial for the complex dynamic multi-cellular behavior of these bacteria. However, the mechanism underlying the cell alignment and clustering is not fully understood. Motivated by studies of clustering in self-propelled rods, we hypothesized that M. xanthus cells can align and form clusters through pure mechanical interactions among cells and between cells and substrate. We test this hypothesis using an agent-based simulation framework in which each agent is based on the biophysical model of an individual M. xanthus cell. We show that model agents, under realistic cell flexibility values, can align and form cell clusters but only when periodic reversals of cell directions are suppressed. However, by extending our model to introduce the observed ability of cells to deposit and follow slime trails, we show that effective trail-following leads to clusters in reversing cells. Furthermore, we conclude that mechanical cell alignment combined with slime-trail-following is sufficient to explain the distinct clustering behaviors observed for wild-type and non-reversing M. xanthus mutants in recent experiments. Our results are robust to variation in model parameters, match the experimentally observed trends and can be applied to understand surface motility patterns of other bacterial species.
Collapse
Affiliation(s)
- Rajesh Balagam
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Elgeti J, Winkler RG, Gompper G. Physics of microswimmers--single particle motion and collective behavior: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:056601. [PMID: 25919479 DOI: 10.1088/0034-4885/78/5/056601] [Citation(s) in RCA: 697] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
Collapse
Affiliation(s)
- J Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | |
Collapse
|
16
|
Nagai KH, Sumino Y, Montagne R, Aranson IS, Chaté H. Collective motion of self-propelled particles with memory. PHYSICAL REVIEW LETTERS 2015; 114:168001. [PMID: 25955073 DOI: 10.1103/physrevlett.114.168001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 05/11/2023]
Abstract
We show that memory, in the form of underdamped angular dynamics, is a crucial ingredient for the collective properties of self-propelled particles. Using Vicsek-style models with an Ornstein-Uhlenbeck process acting on angular velocity, we uncover a rich variety of collective phases not observed in usual overdamped systems, including vortex lattices and active foams. In a model with strictly nematic interactions the smectic arrangement of Vicsek waves giving rise to global polar order is observed. We also provide a calculation of the effective interaction between vortices in the case where a telegraphic noise process is at play, explaining thus the emergence and structure of the vortex lattices observed here and in motility assay experiments.
Collapse
Affiliation(s)
- Ken H Nagai
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Yutaka Sumino
- Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Raul Montagne
- Departamento de Fisica, UFRPE, 52171-900 Recife, Pernambuco, Brazil
| | - Igor S Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
- LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris, France
- Beijing Computational Science Research Center, 3 Heqing Road, Beijing 100080, China
| |
Collapse
|
17
|
Barlow PW, Fisahn J. Swarms, swarming and entanglements of fungal hyphae and of plant roots. Commun Integr Biol 2013; 6:e25299. [PMID: 24255743 PMCID: PMC3829901 DOI: 10.4161/cib.25299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022] Open
Abstract
There has been recent interest in the possibility that plant roots can show oriented collective motion, or swarming behavior. We examine the evidence supportive of root swarming and we also present new observations on this topic. Seven criteria are proposed for the definition of a swarm, whose application can help identify putative swarming behavior in plants. Examples where these criteria are fulfilled, at many levels of organization, are presented in relation to plant roots and root systems, as well as to the root-like mycelial cords (rhizomorphs) of fungi. The ideas of both an "active" swarming, directed by a signal which imposes a common vector on swarm element aggregation, and a "passive" swarming, where aggregation results from external constraint, are introduced. Active swarming is a pattern of cooperative behavior peculiar to the sporophyte generation of vascular plants and is the antithesis of the competitive behavior shown by the gametophyte generation of such plants, where passive swarming may be found. Fungal mycelial cords could serve as a model example of swarming in a multi-cellular, non-animal system.
Collapse
Affiliation(s)
- Peter W. Barlow
- School of Biological Sciences; University of Bristol; Bristol, United Kingdom
| | - Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology; Potsdam, Germany
| |
Collapse
|