1
|
Rojas-Vega M, de Castro P, Soto R. Mixtures of self-propelled particles interacting with asymmetric obstacles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:95. [PMID: 37819444 DOI: 10.1140/epje/s10189-023-00354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
In the presence of an obstacle, active particles condensate into a surface "wetting" layer due to persistent motion. If the obstacle is asymmetric, a rectification current arises in addition to wetting. Asymmetric geometries are therefore commonly used to concentrate microorganisms like bacteria and sperms. However, most studies neglect the fact that biological active matter is diverse, composed of individuals with distinct self-propulsions. Using simulations, we study a mixture of "fast" and "slow" active Brownian disks in two dimensions interacting with large half-disk obstacles. With this prototypical obstacle geometry, we analyze how the stationary collective behavior depends on the degree of self-propulsion "diversity," defined as proportional to the difference between the self-propulsion speeds, while keeping the average self-propulsion speed fixed. A wetting layer rich in fast particles arises. The rectification current is amplified by speed diversity due to a superlinear dependence of rectification on self-propulsion speed, which arises from cooperative effects. Thus, the total rectification current cannot be obtained from an effective one-component active fluid with the same average self-propulsion speed, highlighting the importance of considering diversity in active matter.
Collapse
Affiliation(s)
- Mauricio Rojas-Vega
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Pablo de Castro
- ICTP South American Institute for Fundamental Research and Instituto de Física Teórica, Universidade Estadual Paulista - UNESP, São Paulo, 01140-070, Brazil.
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| |
Collapse
|
2
|
Bickmann J, Bröker S, Te Vrugt M, Wittkowski R. Active Brownian particles in external force fields: Field-theoretical models, generalized barometric law, and programmable density patterns. Phys Rev E 2023; 108:044601. [PMID: 37978644 DOI: 10.1103/physreve.108.044601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 11/19/2023]
Abstract
We investigate the influence of external forces on the collective dynamics of interacting active Brownian particles in two as well as three spatial dimensions. Via explicit coarse graining, we derive predictive models, i.e., models that give a direct relation between the models' coefficients and the bare parameters of the system, that are applicable for space- and time-dependent external force fields. We study these models for the cases of gravity and harmonic traps. In particular, we derive a generalized barometric formula for interacting active Brownian particles under gravity that is valid for low to high concentrations and activities of the particles. Furthermore, we show that one can use an external harmonic trap to induce motility-induced phase separation in systems that, without external fields, remain in a homogeneous state. This finding makes it possible to realize programmable density patterns in systems of active Brownian particles. Our analytic predictions are found to be in very good agreement with Brownian dynamics simulations.
Collapse
Affiliation(s)
- Jens Bickmann
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Stephan Bröker
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
3
|
Méhes E, Mones E, Varga M, Zsigmond Á, Biri-Kovács B, Nyitray L, Barone V, Krens G, Heisenberg CP, Vicsek T. 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation. Commun Biol 2023; 6:817. [PMID: 37542157 PMCID: PMC10403547 DOI: 10.1038/s42003-023-05181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Abstract
Tissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy. We show that general inhibition of actomyosin contractility by the Rho kinase inhibitor Y27632 delays segregation. Cell type-specific inhibition of non-muscle myosin2 activity by overexpression of myosin assembly inhibitor S100A4 reduces tissue surface tension, manifested in decreased compaction during aggregation and inverted geometry observed during segregation. The same is observed when we express a constitutively active Rho kinase isoform to ubiquitously keep actomyosin contractility high at cell-cell and cell-medium interfaces and thus overriding the interface-specific regulation of cortical tensions. Tissue surface tension regulation can become an effective tool in tissue engineering.
Collapse
Affiliation(s)
- Elod Méhes
- Department of Biological Physics, ELTE Eötvös University, Budapest, Hungary
| | - Enys Mones
- Department of Biological Physics, ELTE Eötvös University, Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös University, Budapest, Hungary
| | - Áron Zsigmond
- Department of Genetics, ELTE Eötvös University, Budapest, Hungary
| | - Beáta Biri-Kovács
- Department of Biochemistry, ELTE Eötvös University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, ELTE Eötvös University, Budapest, Hungary
| | - Vanessa Barone
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, USA
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gabriel Krens
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Tamás Vicsek
- Department of Biological Physics, ELTE Eötvös University, Budapest, Hungary.
| |
Collapse
|
4
|
Sampat PB, Mishra S. Polar swimmers induce several phases in active nematics. Phys Rev E 2021; 104:024130. [PMID: 34525577 DOI: 10.1103/physreve.104.024130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023]
Abstract
Swimming bacteria in passive nematics in the form of lyotropic liquid crystals are defined as a new class of active matter known as living liquid crystals in recent studies. It has also been shown that liquid crystal solutions are promising candidates for trapping and detecting bacteria. We ask the question, can a similar class of matter be designed for background nematics which are also active? Hence, we developed a minimal model for the mixture of polar particles in active nematics. It is found that the active nematics in such a mixture are highly sensitive to the presence of polar particles and show the formation of large scale higher order structures for a relatively low polar particle density. Upon increasing the density of polar particles, different phases of active nematics are found and it is observed that the system shows two phase transitions. The first phase transition is a first order transition from quasi-long-ranged ordered active nematics to disordered active nematics with larger scale structures. On further increasing density of polar particles, the system transitions to a third phase, where polar particles form large, mutually aligned clusters. These clusters sweep the whole system and enforce local order in the nematics. The current study can be helpful for detecting the presence of very low densities of polar swimmers in active nematics and can be used to design and control different structures in active nematics.
Collapse
Affiliation(s)
- Pranay Bimal Sampat
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, U.P. - 221005 India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, U.P. - 221005 India
| |
Collapse
|
5
|
Swarm Hunting and Cluster Ejections in Chemically Communicating Active Mixtures. Sci Rep 2020; 10:5594. [PMID: 32221323 PMCID: PMC7101431 DOI: 10.1038/s41598-020-62324-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
A large variety of microorganisms produce molecules to communicate via complex signaling mechanisms such as quorum sensing and chemotaxis. The biological diversity is enormous, but synthetic inanimate colloidal microswimmers mimic microbiological communication (synthetic chemotaxis) and may be used to explore collective behaviour beyond the one-species limit in simpler setups. In this work we combine particle based and continuum simulations as well as linear stability analyses, and study a physical minimal model of two chemotactic species. We observed a rich phase diagram comprising a “hunting swarm phase”, where both species self-segregate and form swarms, pursuing, or hunting each other, and a “core-shell-cluster phase”, where one species forms a dense cluster, which is surrounded by a (fluctuating) corona of particles from the other species. Once formed, these clusters can dynamically eject their core such that the clusters almost turn inside out. These results exemplify a physical route to collective behaviours in microorganisms and active colloids, which are so-far known to occur only for comparatively large and complex animals like insects or crustaceans.
Collapse
|
6
|
Mahapatra PS, Mathew S. Activity-induced mixing and phase transitions of self-propelled swimmers. Phys Rev E 2019; 99:012609. [PMID: 30780250 DOI: 10.1103/physreve.99.012609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 11/07/2022]
Abstract
We study the mixing of active swimmers. Two different types of swimmers (modeled as particles) are placed initially in two boxes with an interconnection between them. The mixing of swimmers happens as they move with their own self-propelled forces. The self-propelled force is constant and the direction of the exerted thrust is governed by the neighboring swimmers. Overall mixing of the swimmers depends on the magnitude of the exerted thrust, the initial packing fraction, and the activity level. Different nonequilibrium states are also identified depending on the exerted thrust and the initial packing fraction of the swimmers.
Collapse
Affiliation(s)
- Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Sam Mathew
- Gyan Data Pvt. Ltd., IIT Madras Research Park, Chennai, India
| |
Collapse
|
7
|
Khodygo V, Swain MT, Mughal A. Homogeneous and heterogeneous populations of active rods in two-dimensional channels. Phys Rev E 2019; 99:022602. [PMID: 30934362 DOI: 10.1103/physreve.99.022602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 06/09/2023]
Abstract
Active swarms, consisting of individual agents which consume energy to move or produce work, are known to generate a diverse range of collective behaviors. Many examples of active swarms are biological in nature (e.g., fish shoals and bird flocks) and have been modeled extensively by numerical simulations. Such simulations of swarms usually assume that the swarm is homogeneous; that is, every agent has exactly the same dynamical properties. However, many biological swarms are highly heterogeneous, such as multispecies communities of micro-organisms in soil, and individual species may have a wide range of different physical properties. Here we explore heterogeneity by developing a simple model for the dynamics of a swarm of motile heterogeneous rodlike bacteria in the absence of hydrodynamic effects. Using molecular dynamics simulations of active rods confined within a two-dimensional rectangular channel, we first explore the case of homogeneous swarms and show that the key parameter governing both dynamics is ratio of the motility force to the steric force. Next we explore heterogeneous or mixed swarms in which the constituent self-propelled rods have a range of motilities and steric interactions. Our results show that the confining boundaries play a strong role in driving the segregation of mixed populations.
Collapse
Affiliation(s)
- V Khodygo
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, Wales, SY23 3DA, United Kingdom
- Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, Wales, SY23 3DB, United Kingdom
| | - M T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, Wales, SY23 3DA, United Kingdom
| | - A Mughal
- Institute of Mathematics, Physics and Computer Science, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion, Wales, SY23 3DB, United Kingdom
| |
Collapse
|
8
|
Beatrici CP, de Almeida RMC, Brunnet LG. Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics. Phys Rev E 2017; 95:032402. [PMID: 28415271 DOI: 10.1103/physreve.95.032402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/07/2022]
Abstract
Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as t^{d/d+2} when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.
Collapse
Affiliation(s)
- Carine P Beatrici
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15051, 91501-970 Porto Alegre, RS, Brazil.,Programa de Computação Científica, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, C.P. 21040-360, Brazil
| | - Rita M C de Almeida
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15051, 91501-970 Porto Alegre, RS, Brazil.,Instituto Nacional de Ciência e Tecnologia, Sistemas Complexos Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, C.P. 22290-180, Brazil
| | - Leonardo G Brunnet
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15051, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Jiang H, Ding H, Pu M, Hou Z. Emergence of collective dynamical chirality for achiral active particles. SOFT MATTER 2017; 13:836-841. [PMID: 28067390 DOI: 10.1039/c6sm02335e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of the reported CDCs have been found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered onto a substrate. Active motion, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplets, rotating bubbles, CDC oscillations, arrays of collective rotations, and interesting transitions such as chirality transition, structure transition and state reentrance.
Collapse
Affiliation(s)
- Huijun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Huai Ding
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Mingfeng Pu
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
10
|
Smeets B, Alert R, Pešek J, Pagonabarraga I, Ramon H, Vincent R. Emergent structures and dynamics of cell colonies by contact inhibition of locomotion. Proc Natl Acad Sci U S A 2016; 113:14621-14626. [PMID: 27930287 PMCID: PMC5187738 DOI: 10.1073/pnas.1521151113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cells in tissues can organize into a broad spectrum of structures according to their function. Drastic changes of organization, such as epithelial-mesenchymal transitions or the formation of spheroidal aggregates, are often associated either to tissue morphogenesis or to cancer progression. Here, we study the organization of cell colonies by means of simulations of self-propelled particles with generic cell-like interactions. The interplay between cell softness, cell-cell adhesion, and contact inhibition of locomotion (CIL) yields structures and collective dynamics observed in several existing tissue phenotypes. These include regular distributions of cells, dynamic cell clusters, gel-like networks, collectively migrating monolayers, and 3D aggregates. We give analytical predictions for transitions between noncohesive, cohesive, and 3D cell arrangements. We explicitly show how CIL yields an effective repulsion that promotes cell dispersal, thereby hindering the formation of cohesive tissues. Yet, in continuous monolayers, CIL leads to collective cell motion, ensures tensile intercellular stresses, and opposes cell extrusion. Thus, our work highlights the prominent role of CIL in determining the emergent structures and dynamics of cell colonies.
Collapse
Affiliation(s)
- Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Ricard Alert
- Departament de Física de la Matèria Condensada & Universitat de Barcelona Institute of Complex Systems (UBICS), Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jiří Pešek
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada & Universitat de Barcelona Institute of Complex Systems (UBICS), Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Herman Ramon
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Romaric Vincent
- Université Grenoble Alpes, Commissariat à l'énergie atomique (CEA), F-38000 Grenoble, France
- Laboratoire d'électronique des technologies de l'information (CEA-LETI), Micro and Nanotechnology Innovation Centre (MINATEC), F-38054 Grenoble, France
| |
Collapse
|
11
|
Barberis L, Peruani F. Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates. PHYSICAL REVIEW LETTERS 2016; 117:248001. [PMID: 28009185 DOI: 10.1103/physrevlett.117.248001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 05/27/2023]
Abstract
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit-due to the VC that breaks Newton's third law-various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving-locally polar-files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
Collapse
Affiliation(s)
- Lucas Barberis
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
- IFEG, FaMAF, CONICET, UNC, X5000HUA Córdoba, Argentina
| | - Fernando Peruani
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| |
Collapse
|
12
|
Loganathan R, Rongish BJ, Smith CM, Filla MB, Czirok A, Bénazéraf B, Little CD. Extracellular matrix motion and early morphogenesis. Development 2016; 143:2056-65. [PMID: 27302396 PMCID: PMC4920166 DOI: 10.1242/dev.127886] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Christopher M Smith
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael B Filla
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA Department of Biological Physics, Eotvos University, Budapest 1117, Hungary
| | - Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|