1
|
Li Z, Liu L. Dynamics analysis and electromagnetic characteristics calculation of permanent magnet 3-degree-of-freedom motor. Sci Prog 2020; 103:36850419874213. [PMID: 31829863 PMCID: PMC10453723 DOI: 10.1177/0036850419874213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article proposes a conceptual model of a new type permanent magnet 3-degree-of-freedom motor. Its structure consists of an internal rotation module and a peripheral deflection module. It can be driven independently to achieve high-speed rotation and precise tilting of the motor. The 3-degree-of-freedom movement of the motor in space is achieved by the synchronous operation of the rotation and the deflection. In order to explore the loss problem caused by the temperature rise problem in the actual operation of the motor, the eddy current loss and core loss inside the permanent magnet of the motor are analyzed by theoretical formula and finite element method, respectively. Based on the static magnetic field, the gas flux density of two types of rotor permanent magnets in different coordinate systems is analyzed. The motor's rotation and deflection torque characteristics are calculated using the principle of virtual displacement method. Using the auxiliary technology of the virtual prototype, according to the actual situation of the motor, the corresponding motion hinges and driving forms are summarized, and the control strategies of rotation, deflection, and rotation and deflection simultaneously are planned. The trajectory of the motor is described by observing the selected points. For the motor from product design to prototype testing and to the final processing assembly, a solid theoretical foundation is laid for the proposed work.
Collapse
Affiliation(s)
- Zheng Li
- School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lingqi Liu
- School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
2
|
Kuśmierz Ł, Gudowska-Nowak E. Subdiffusive continuous-time random walks with stochastic resetting. Phys Rev E 2019; 99:052116. [PMID: 31212503 DOI: 10.1103/physreve.99.052116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 06/09/2023]
Abstract
We analyze two models of subdiffusion with stochastic resetting. Each of them consists of two parts: subdiffusion based on the continuous-time random walk scheme and independent resetting events generated uniformly in time according to the Poisson point process. In the first model the whole process is reset to the initial state, whereas in the second model only the position is subject to resets. The distinction between these two models arises from the non-Markovian character of the subdiffusive process. We derive exact expressions for the two lowest moments of the full propagator, stationary distributions, and first hitting time statistics. We also show, with an example of a constant drift, how these models can be generalized to include external forces. Possible applications to data analysis and modeling of biological systems are also discussed.
Collapse
Affiliation(s)
- Łukasz Kuśmierz
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ewa Gudowska-Nowak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland and Mark Kac Complex Systems Research Center, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
3
|
Hasegawa S, Sagawa T, Ikeda K, Okada Y, Hayashi K. Investigation of multiple-dynein transport of melanosomes by non-invasive force measurement using fluctuation unit χ. Sci Rep 2019; 9:5099. [PMID: 30911050 PMCID: PMC6433852 DOI: 10.1038/s41598-019-41458-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pigment organelles known as melanosomes disperse or aggregate in a melanophore in response to hormones. These movements are mediated by the microtubule motors kinesin-2 and cytoplasmic dynein. However, the force generation mechanism of dynein, unlike that of kinesin, is not well understood. In this study, to address this issue, we investigated the dynein-mediated aggregation of melanosomes in zebrafish melanophores. We applied the fluctuation theorem of non-equilibrium statistical mechanics to estimate forces acting on melanosomes during transport by dynein, given that the energy of a system is related to its fluctuation. Our results demonstrate that multiple force-producing units cooperatively transport a single melanosome. Since the force is generated by dynein, this suggests that multiple dyneins carry a single melanosome. Cooperative transport has been reported for other organelles; thus, multiple-motor transport may be a universal mechanism for moving organelles within the cell.
Collapse
Affiliation(s)
- Shin Hasegawa
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Takashi Sagawa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kazuho Ikeda
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan.,Department of Physics and Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Physics, Universal Biology Institute, and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Kumiko Hayashi
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
4
|
Rozenbaum VM, Shapochkina IV, Teranishi Y, Trakhtenberg LI. High-temperature ratchets driven by deterministic and stochastic fluctuations. Phys Rev E 2019; 99:012103. [PMID: 30780357 DOI: 10.1103/physreve.99.012103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/07/2022]
Abstract
We consider the overdamped dynamics of a Brownian particle in an arbitrary spatial periodic and time-dependent potential on the basis of an exact solution for the probability density in the form of a power series in the inverse friction coefficient. The expression for the average velocity of a Brownian ratchet is simplified in the high-temperature consideration when only the first terms of the series can be used. For the potential of an additive-multiplicative form (a sum of a time-independent contribution and a time-dependent multiplicative perturbation), general explicit expressions are obtained which allow comparative analysis of frequency dependencies of the average velocity, implying deterministic and stochastic potential energy fluctuations. For qualitative and quantitative analysis of these dependences, we choose illustrative examples for spatial harmonic fluctuations: with deterministic time dependences of a relaxation type and stochastic time dependences describing Markovian dichotomous and harmonic noise processes. We explore the influence of fluctuation types on the ratchet effect and demonstrate its enhancement in the case of harmonic noise.
Collapse
Affiliation(s)
- V M Rozenbaum
- Institute of Physics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Generala Naumova Street 17, Kiev 03164, Ukraine
| | - I V Shapochkina
- Institute of Physics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Department of Physics, Belarusian State University, Prospekt Nezavisimosti 4, Minsk 220050, Belarus
| | - Y Teranishi
- Institute of Physics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan
| | - L I Trakhtenberg
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia; Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700, Moscow Region, Russia; and Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
5
|
Goychuk I. Perfect anomalous transport of subdiffusive cargos by molecular motors in viscoelastic cytosol. Biosystems 2018; 177:56-65. [PMID: 30419266 DOI: 10.1016/j.biosystems.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022]
Abstract
Multiple experiments show that various submicron particles such as magnetosomes, RNA messengers, viruses, and even much smaller nanoparticles such as globular proteins diffuse anomalously slow in viscoelastic cytosol of living cells. Hence, their sufficiently fast directional transport by molecular motors such as kinesins is crucial for the cell operation. It has been shown recently that the traditional flashing Brownian ratchet models of molecular motors are capable to describe both normal and anomalous transport of such subdiffusing cargos by molecular motors with a very high efficiency. This work elucidates further an important role of mechanochemical coupling in such an anomalous transport. It shows a natural emergence of a perfect subdiffusive ratchet regime due to allosteric effects, where the random rotations of a "catalytic wheel" at the heart of the motor operation become perfectly synchronized with the random stepping of a heavily loaded motor, so that only one ATP molecule is consumed on average at each motor step along microtubule. However, the number of rotations made by the catalytic engine and the traveling distance both scale sublinearly in time. Nevertheless, this anomalous transport can be very fast in absolute terms.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
6
|
Goychuk I. Viscoelastic subdiffusion in a random Gaussian environment. Phys Chem Chem Phys 2018; 20:24140-24155. [PMID: 30206605 DOI: 10.1039/c8cp05238g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Dey S, Ching K, Das M. Active and passive transport of cargo in a corrugated channel: A lattice model study. J Chem Phys 2018; 148:134907. [PMID: 29626914 DOI: 10.1063/1.5022163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inside cells, cargos such as vesicles and organelles are transported by molecular motors to their correct locations via active motion on cytoskeletal tracks and passive, Brownian diffusion. During the transportation of cargos, motor-cargo complexes (MCCs) navigate the confining and crowded environment of the cytoskeletal network and other macromolecules. Motivated by this, we study a minimal two-state model of motor-driven cargo transport in confinement and predict transport properties that can be tested in experiments. We assume that the motion of the MCC is directly affected by the entropic barrier due to confinement if it is in the passive, unbound state but not in the active, bound state where it moves with a constant bound velocity. We construct a lattice model based on a Fokker Planck description of the two-state system, study it using a kinetic Monte Carlo method and compare our numerical results with analytical expressions for a mean field limit. We find that the effect of confinement strongly depends on the bound velocity and the binding kinetics of the MCC. Confinement effectively reduces the effective diffusivity and average velocity, except when it results in an enhanced average binding rate and thereby leads to a larger average velocity than when unconfined.
Collapse
Affiliation(s)
- Supravat Dey
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Kevin Ching
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
8
|
Goychuk I. Sensing Magnetic Fields with Magnetosensitive Ion Channels. SENSORS (BASEL, SWITZERLAND) 2018; 18:E728. [PMID: 29495645 PMCID: PMC5877195 DOI: 10.3390/s18030728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
[-15]Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k B T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
9
|
Goychuk I. Molecular machines operating on the nanoscale: from classical to quantum. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:328-50. [PMID: 27335728 PMCID: PMC4901870 DOI: 10.3762/bjnano.7.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation-dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Goychuk I. Modeling magnetosensitive ion channels in the viscoelastic environment of living cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042711. [PMID: 26565276 DOI: 10.1103/physreve.92.042711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 05/07/2023]
Abstract
We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from magnetotactic bacteria to fishes, birds, rats, bats, and other mammals including humans. The core of the model is provided by a short chain of magnetosomes serving as a sensor, which is coupled by elastic linkers to the gating elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes and can open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic parameters, it is shown that this model channel can operate in the magnetic field of Earth for a small number (five to seven) of single-domain magnetosomes constituting the sensor rod, each of which has a typical size found in magnetotactic bacteria and other organisms or even just one sufficiently large nanoparticle of a characteristic size also found in nature. It is shown that, due to the viscoelasticity of the medium, the bistable gating dynamics generally exhibits power law and stretched exponential distributions of the residence times of the channels in their open and closed states. This provides a generic physical mechanism for the explanation of the origin of such anomalous kinetics for other ionic channels whose sensors move in a viscoelastic environment provided by either cytosol or biological membrane, in a quite general context, beyond the fascinating hypothesis of magnetosensitive ionic channels we explore.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|