1
|
Babicheva RI, Semenov AS, Soboleva EG, Kudreyko AA, Zhou K, Dmitriev SV. Discrete breathers in a triangular β-Fermi-Pasta-Ulam-Tsingou lattice. Phys Rev E 2021; 103:052202. [PMID: 34134260 DOI: 10.1103/physreve.103.052202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
A practical approach to the search for (quasi-) discrete breathers (DBs) in a triangular β-FPUT lattice (after Fermi, Pasta, Ulam, and Tsingou) is proposed. DBs are obtained by superimposing localizing functions on delocalized nonlinear vibrational modes (DNVMs) having frequencies above the phonon spectrum of the lattice. Zero-dimensional and one-dimensional DBs are obtained. The former ones are localized in both spatial dimensions, and the latter ones are only in one dimension. Among the one-dimensional DBs, two families are considered: the first is based on the DNVMs of a triangular lattice, and the second is based on the DNVMs of a chain. We speculate that our systematic approach on the triangular β-FPUT lattice reveals all possible types of spatially localized oscillations with frequencies bifurcating from the upper edge of the phonon band as all DNVMs with frequencies above the phonon band are analyzed.
Collapse
Affiliation(s)
- Rita I Babicheva
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alexander S Semenov
- Polytechnic Institute (Branch) in Mirny, North-Eastern Federal University, Tikhonova St. 5/1, 678170 Mirny, Sakha Republic (Yakutia), Russia
| | - Elvira G Soboleva
- Yurga Institute of Technology (Branch), National Research Tomsk Polytechnic University, 652050 Yurga, Russia
| | - Aleksey A Kudreyko
- Department of Medical Physics and Informatics, Bashkir State Medical University, Lenin St. 3, 450008 Ufa, Russia
| | - Kun Zhou
- Environmental Process Modelling Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Sergey V Dmitriev
- Institute for Metals Superplasticity Problems of RAS, Khalturin St. 39, Ufa 450000, Russia
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of RAS, Oktyabrya Ave. 151, Ufa 450075, Russia
| |
Collapse
|
2
|
Melvin RL, Xiao J, Godwin RC, Berenhaut KS, Salsbury FR. Visualizing correlated motion with HDBSCAN clustering. Protein Sci 2018; 27:62-75. [PMID: 28799290 PMCID: PMC5734272 DOI: 10.1002/pro.3268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Correlated motion analysis provides a method for understanding communication between and dynamic similarities of biopolymer residues and domains. The typical equal-time correlation matrices-frequently visualized with pseudo-colorings or heat maps-quickly convey large regions of highly correlated motion but hide more subtle similarities of motion. Here we propose a complementary method for visualizing correlations within proteins (or general biopolymers) that quickly conveys intuition about which residues have a similar dynamic behavior. For grouping residues, we use the recently developed non-parametric clustering algorithm HDBSCAN. Although the method we propose here can be used to group residues using correlation as a similarity matrix-the most straightforward and intuitive method-it can also be used to more generally determine groups of residues which have similar dynamic properties. We term these latter groups "Dynamic Domains", as they are based not on spatial closeness but rather closeness in the column space of a correlation matrix. We provide examples of this method across three human proteins of varying size and function-the Nf-Kappa-Beta essential modulator, the clotting promoter Thrombin and the mismatch repair protein (dimer) complex MutS-alpha. Although the examples presented here are from all-atom molecular dynamics simulations, this visualization technique can also be used on correlations matrices built from any ensembles of conformations from experiment or computation.
Collapse
Affiliation(s)
- Ryan L. Melvin
- Department of PhysicsWake Forest UniversityWinston SalemNorth Carolina
- Department of Mathematics and StatisticsWake Forest UniversityWinston‐SalemNorth Carolina27109
| | - Jiajie Xiao
- Department of PhysicsWake Forest UniversityWinston SalemNorth Carolina
- Department of Computer ScienceWake Forest UniversityWinston‐SalemNorth Carolina27109
| | - Ryan C. Godwin
- Department of PhysicsWake Forest UniversityWinston SalemNorth Carolina
| | - Kenneth S. Berenhaut
- Department of Mathematics and StatisticsWake Forest UniversityWinston‐SalemNorth Carolina27109
| | | |
Collapse
|
3
|
Morgan SE, Cole DJ, Chin AW. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex. Sci Rep 2016; 6:36703. [PMID: 27827409 PMCID: PMC5101523 DOI: 10.1038/srep36703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/19/2016] [Indexed: 11/10/2022] Open
Abstract
Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.
Collapse
Affiliation(s)
- Sarah E Morgan
- Theory of Condensed Matter Group, Physics Department, University of Cambridge, CB3 0HE, United Kingdom
| | - Daniel J Cole
- Theory of Condensed Matter Group, Physics Department, University of Cambridge, CB3 0HE, United Kingdom.,School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Alex W Chin
- Theory of Condensed Matter Group, Physics Department, University of Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|
4
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
5
|
Tiwari SP, Reuter N. Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes. PLoS Comput Biol 2016; 12:e1004834. [PMID: 27015412 PMCID: PMC4807811 DOI: 10.1371/journal.pcbi.1004834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 11/19/2022] Open
Abstract
The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 β-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the β-barrel core is highly rigid, while the α-helices that flank the β-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design.
Collapse
Affiliation(s)
- Sandhya P. Tiwari
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
- * E-mail:
| |
Collapse
|
6
|
Kav B, Öztürk M, Kabakçιoğlu A. Function changing mutations in glucocorticoid receptor evolution correlate with their relevance to mode coupling. Proteins 2016; 84:655-65. [PMID: 26873882 DOI: 10.1002/prot.25014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Nonlinear effects in protein dynamics are expected to play role in function, particularly of allosteric nature, by facilitating energy transfer between vibrational modes. A recently proposed method focusing on the non-Gaussian shape of the configurational population near equilibrium projects this information onto real space in order to identify the aminoacids relevant to function. We here apply this method to three ancestral proteins in glucocorticoid receptor (GR) family and show that the mutations that restrict functional activity during GR evolution correlate significantly with locations that are highlighted by the nonlinear contribution to the near-native configurational distribution. Our findings demonstrate that the analysis of nonlinear effects in protein dynamics can be harnessed into a predictive tool for functional site determination.
Collapse
Affiliation(s)
- Batuhan Kav
- Department of Theory & Biosystems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany.,Colleges of Sciences, Koç University, Sar Iyer, İstanbul, 34450, Turkey
| | - Murat Öztürk
- Colleges of Sciences, Koç University, Sar Iyer, İstanbul, 34450, Turkey.,School of Informatics and Computing, Bioinformatics Track, Indiana University, Bloomington, Indiana, 47405, USA
| | - Alkan Kabakçιoğlu
- Colleges of Sciences, Koç University, Sar Iyer, İstanbul, 34450, Turkey
| |
Collapse
|
7
|
Aubailly S, Piazza F. Cutoff lensing: predicting catalytic sites in enzymes. Sci Rep 2015; 5:14874. [PMID: 26445900 PMCID: PMC4597221 DOI: 10.1038/srep14874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/10/2015] [Indexed: 01/12/2023] Open
Abstract
Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.
Collapse
Affiliation(s)
- Simon Aubailly
- Université d'Orléans, Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071, Orléans, France
| | - Francesco Piazza
- Université d'Orléans, Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071, Orléans, France
| |
Collapse
|
8
|
Caraglio M, Imparato A. Energy transfer in molecular devices. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062712. [PMID: 25615134 DOI: 10.1103/physreve.90.062712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 06/04/2023]
Abstract
Protein machines often exhibit long-range interplay between different sites in order to achieve their biological tasks. We investigate and characterize the nonlinear energy localization and the basic mechanisms of energy transfer in protein devices. By studying two different model protein machines, with different biological functions, we show that genuinely nonlinear phenomena are responsible for energy transport between the different machine sites involved in the biological functions. The energy transfer turns out to be extremely efficient from an energetic point of view: by changing the energy initially provided to the model device, we identify a well defined range of energies where the time for the energy transport to occur is minimal and the amount of transferred energy is a maximum. Furthermore, by introducing an implicit solvent, we show that the energy is localized on the internal residues of the protein structure, thus minimizing the dissipation.
Collapse
Affiliation(s)
- M Caraglio
- Dipartimento di Fisica e Astronomia, Sezione INFN, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - A Imparato
- Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, Building 1520, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Miño G, Barriga R, Gutierrez G. Hydrogen Bonds and Heat Diffusion in α-Helices: A Computational Study. J Phys Chem B 2014; 118:10025-34. [DOI: 10.1021/jp503420e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- German Miño
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
- Centro
Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad
de Ciencias Biologicas, Centro de Bioinformatica y Biologia Integrativa, Universidad Andres Bello, Av.Republica 239, Santiago, Chile
| | - Raul Barriga
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Gonzalo Gutierrez
- Group
of NanoMaterials, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| |
Collapse
|
10
|
Chauvot de Beauchêne I, Allain A, Panel N, Laine E, Trouvé A, Dubreuil P, Tchertanov L. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLoS Comput Biol 2014; 10:e1003749. [PMID: 25079768 PMCID: PMC4117417 DOI: 10.1371/journal.pcbi.1003749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/12/2014] [Indexed: 12/03/2022] Open
Abstract
Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. Receptor tyrosine kinase KIT plays a crucial role in the regulation of cell signaling. This allosterically controlled activity may be affected by gain-of-function mutations that promote the development of several cancers. Identification of the molecular basis of KIT constitutive activation and allosteric regulation has inspired computational study of KIT hotspot mutations. In the present contribution, we investigated the mutation-induced effects on KIT conformational dynamics and intra-protein communication conditionally on the mutation location and the nature of the substituting amino acid. Our data elucidate that all studied mutations stabilize an inactive non-autoinhibited state of KIT over the inactive auto-inhibited state prevalent for the native protein. This shift in the protein conformational landscape promotes KIT constitutive activation. Our in silico analysis established correlations between the structural and dynamical effects induced by oncogenic mutations and the mutants auto-activation rates and drug sensitivities measured in vitro and in vivo. Particularly, the A-loop mutations stabilize the drug-resistant forms, while the JMR mutations may facilitate inhibitors binding to the active site. Cross-correlations established between local and long-range structural and dynamical effects demonstrate the allosteric character of the gain-of-function mutations mode of action.
Collapse
Affiliation(s)
- Isaure Chauvot de Beauchêne
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ariane Allain
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Nicolas Panel
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Alain Trouvé
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Patrice Dubreuil
- Inserm, U1068, Signaling, Hematopoiesis and Mechanism of Oncogenesis (CRCM); Institut Paoli-Calmettes; Aix-Marseille University; CNRS, UMR7258, Marseille, France
| | - Luba Tchertanov
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
11
|
Fenwick RB, Orellana L, Esteban-Martín S, Orozco M, Salvatella X. Correlated motions are a fundamental property of β-sheets. Nat Commun 2014; 5:4070. [PMID: 24915882 DOI: 10.1038/ncomms5070] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/08/2014] [Indexed: 01/19/2023] Open
Abstract
Correlated motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. The mechanisms that underlie these processes remain largely unknown due mainly to limitations in their direct detection. Here, based on a detailed analysis of protein structures deposited in the protein data bank, as well as on state-of-the art molecular simulations, we provide general evidence for the transfer of structural information by correlated backbone motions, mediated by hydrogen bonds, across β-sheets. We also show that the observed local and long-range correlated motions are mediated by the collective motions of β-sheets and investigate their role in large-scale conformational changes. Correlated motions represent a fundamental property of β-sheets that contributes to protein function.
Collapse
Affiliation(s)
- R Bryn Fenwick
- 1] Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain [2]
| | - Laura Orellana
- 1] Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain [2]
| | - Santi Esteban-Martín
- Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Modesto Orozco
- 1] Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain [2] Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - Xavier Salvatella
- 1] Joint BSC-CRG-IRB Research Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Allain A, Chauvot de Beauchêne I, Langenfeld F, Guarracino Y, Laine E, Tchertanov L. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs. Faraday Discuss 2014; 169:303-21. [PMID: 25340971 DOI: 10.1039/c4fd00024b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non-activated STAT5 proteins. Our theoretical prediction based on results obtained with MONETA was validated for KIT by in vitro experiments. MONETA is a versatile analytical and visualization tool entirely devoted to the understanding of the functioning/malfunctioning of allosteric regulation in proteins - a crucial basis to guide the discovery of next-generation allosteric drugs.
Collapse
Affiliation(s)
- Ariane Allain
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliquée (LBPA UMR8113 CNRS), École Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| | | | | | | | | | | |
Collapse
|
13
|
Piazza F. Nonlinear excitations match correlated motions unveiled by NMR in proteins: a new perspective on allosteric cross-talk. Phys Biol 2014; 11:036003. [PMID: 24732881 DOI: 10.1088/1478-3975/11/3/036003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper we propose a novel theoretical framework for interpreting long-range dynamical correlations unveiled in proteins through NMR measurements. The theoretical rationale relies on the hypothesis that correlated motions in proteins may be reconstructed as large-scale, collective modes sustained by long-lived nonlinear vibrations known as discrete breathers (DB) localized at key, hot-spot sites. DBs are spatially localized modes, whose nonlinear nature hinders resonant coupling with the normal modes, thus conferring them long lifetimes as compared to normal modes. DBs have been predicted to exist in proteins, localized at few hot-spot residues typically within the stiffest portions of the structure. We compute DB modes analytically in the framework of the nonlinear network model, showing that the displacement patterns of many DBs localized at key sites match to a remarkable extent the experimentally uncovered correlation blueprint. The computed dispersion relations prove that it is physically possible for some of these DBs to be excited out of thermal fluctuations at room temperature. Based on our calculations, we speculate that transient energy redistribution among the vibrational modes in a protein might favor the emergence of DB-like bursts of long-lived energy at hot-spot sites with lifetimes in the ns range, able to sustain critical, function-encoding correlated motions. More generally, our calculations provide a novel quantitative tool to predict fold-spanning dynamical pathways of correlated residues that may be central to allosteric cross-talk in proteins.
Collapse
Affiliation(s)
- Francesco Piazza
- Université d'Orléans, Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C Sadron, F-45071, Orléans, France
| |
Collapse
|
14
|
Perunov N, England JL. Quantitative theory of hydrophobic effect as a driving force of protein structure. Protein Sci 2014; 23:387-99. [PMID: 24408023 DOI: 10.1002/pro.2420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/06/2022]
Abstract
Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence-structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single-domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand-binding and protein-protein interaction sites using this approach.
Collapse
Affiliation(s)
- Nikolay Perunov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | | |
Collapse
|
15
|
Ma CW, Xiu ZL, Zeng AP. Exploring signal transduction in heteromultimeric protein based on energy dissipation model. J Biomol Struct Dyn 2013; 33:134-46. [PMID: 24279729 DOI: 10.1080/07391102.2013.855145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dynamic intersubunit interactions are key elements in the regulation of many biological systems. A better understanding of how subunits interact with each other and how their interactions are related to dynamic protein structure is a fundamental task in biology. In this paper, a heteromultimeric allosteric protein, Corynebacterium glutamicum aspartokinase, is used as a model system to explore the signal transduction involved in intersubunit interactions and allosteric communication with an emphasis on the intersubunit signaling process. For this purpose, energy dissipation simulation and network construction are conducted for each subunit and the whole protein. Comparison with experimental results shows that the new approach is able to predict all the mutation sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. Additionally, analysis revealed that the function of the effector threonine is to facilitate the binding of the two subunits without contributing to the allosteric communication. During the allosteric regulation upon the binding of the effector lysine, signals can be transferred from the β-subunit to the catalytic site of the α-subunit through both a direct way of intersubunit signal transduction, and an indirect way: first, to the regulatory region of the α-subunit by intersubunit signal transduction and then to the catalytic region by intramolecular signal transduction. Therefore, the new approach is able to illustrate the diversity of the underlying mechanisms when the strength of feedback inhibition by the effector(s) is modulated, providing useful information that has potential applications in engineering heteromultimeric allosteric regulation.
Collapse
Affiliation(s)
- Cheng-Wei Ma
- a Institute of Bioprocess and Biosystems Engineering , Hamburg University of Technology , Hamburg D-21073 , Germany
| | | | | |
Collapse
|
16
|
Szalay KZ, Csermely P. Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. PLoS One 2013; 8:e78059. [PMID: 24205090 PMCID: PMC3804472 DOI: 10.1371/journal.pone.0078059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Analysis of network dynamics became a focal point to understand and predict changes of complex systems. Here we introduce Turbine, a generic framework enabling fast simulation of any algorithmically definable dynamics on very large networks. Using a perturbation transmission model inspired by communicating vessels, we define a novel centrality measure: perturbation centrality. Hubs and inter-modular nodes proved to be highly efficient in perturbation propagation. High perturbation centrality nodes of the Met-tRNA synthetase protein structure network were identified as amino acids involved in intra-protein communication by earlier studies. Changes in perturbation centralities of yeast interactome nodes upon various stresses well recapitulated the functional changes of stressed yeast cells. The novelty and usefulness of perturbation centrality was validated in several other model, biological and social networks. The Turbine software and the perturbation centrality measure may provide a large variety of novel options to assess signaling, drug action, environmental and social interventions.
Collapse
Affiliation(s)
- Kristóf Z. Szalay
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Peter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
17
|
Revealing the properties of plant defensins through dynamics. Molecules 2013; 18:11311-26. [PMID: 24064452 PMCID: PMC6270066 DOI: 10.3390/molecules180911311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022] Open
Abstract
Defensins are potent, ancient natural antibiotics that are present in organisms ranging from lower organisms to humans. Although the structures of several defensins have been well characterized, the dynamics of only a few have been studied. This review discusses the diverse dynamics of two plant defensins for which the structure and dynamics have been characterized, both in the free state and in the presence of target membranes. Multiple motions are observed in loops and in secondary structure elements and may be related to twisting or breathing of the α-helix and β-sheet. This complex behavior is altered in the presence of an interface and is responsive to the presence of the putative target. The stages of membrane recognition and disruption can be mapped over a large time scale range, demonstrating that defensins in solution exist as an ensemble of different conformations, a subset of which is selected upon membrane binding. Therefore, studies on the dynamics have revealed that defensins interact with membranes through a mechanism of conformational selection.
Collapse
|
18
|
Ozbek P, Soner S, Haliloglu T. Hot spots in a network of functional sites. PLoS One 2013; 8:e74320. [PMID: 24023934 PMCID: PMC3759471 DOI: 10.1371/journal.pone.0074320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 08/02/2013] [Indexed: 12/05/2022] Open
Abstract
It is of significant interest to understand how proteins interact, which holds the key phenomenon in biological functions. Using dynamic fluctuations in high frequency modes, we show that the Gaussian Network Model (GNM) predicts hot spot residues with success rates ranging between S 8–58%, C 84–95%, P 5–19% and A 81–92% on unbound structures and S 8–51%, C 97–99%, P 14–50%, A 94–97% on complex structures for sensitivity, specificity, precision and accuracy, respectively. High specificity and accuracy rates with a single property on unbound protein structures suggest that hot spots are predefined in the dynamics of unbound structures and forming the binding core of interfaces, whereas the prediction of other functional residues with similar dynamic behavior explains the lower precision values. The latter is demonstrated with the case studies; ubiquitin, hen egg-white lysozyme and M2 proton channel. The dynamic fluctuations suggest a pseudo network of residues with high frequency fluctuations, which could be plausible for the mechanism of biological interactions and allosteric regulation.
Collapse
Affiliation(s)
- Pemra Ozbek
- Department of Bioengineering, Marmara University, Goztepe, Istanbul, Turkey
| | - Seren Soner
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Turkey
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Turkey
- * E-mail:
| |
Collapse
|
19
|
Blacklock K, Verkhivker GM. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. PLoS One 2013; 8:e71936. [PMID: 23977182 PMCID: PMC3747073 DOI: 10.1371/journal.pone.0071936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022] Open
Abstract
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide "molecular brakes" that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 521] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
21
|
Gaspar ME, Csermely P. Rigidity and flexibility of biological networks. Brief Funct Genomics 2012; 11:443-56. [DOI: 10.1093/bfgp/els023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
22
|
Dixit A, Verkhivker GM. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics. PLoS One 2012; 7:e37605. [PMID: 22624053 PMCID: PMC3356286 DOI: 10.1371/journal.pone.0037605] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/24/2012] [Indexed: 12/26/2022] Open
Abstract
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation. PLoS One 2012; 7:e31529. [PMID: 22363664 PMCID: PMC3282753 DOI: 10.1371/journal.pone.0031529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022] Open
Abstract
A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.
Collapse
|
24
|
Satarić MV, Zdravković S, Tuszyński JA. Modeling of relay helix functional dynamics and feasibility of experimental verification by neutron scattering. CHAOS (WOODBURY, N.Y.) 2011; 21:043135. [PMID: 22225372 DOI: 10.1063/1.3665091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular long-range transport involves motor proteins (MPs) (especially, kinesin and myosin) which contain a so-called relay helix. Its motion is of crucial importance to the conversion of chemical energy released in ATP hydrolysis into the coordinated mechanical movement of the entire motor protein. In this paper, we propose two combined nonlinear mechanisms for this particular functional activity and suggest the application of neutron scattering assays to experimentally determine the incoherent dynamic structure factor S(q,ω). We argue that this type of experiment is not only feasible but it could offer significant insights into the mechanism of MP function at a molecular level.
Collapse
Affiliation(s)
- Miljko V Satarić
- Fakultet Tehničkih Nauka, Univerzitet u Novom Sadu, 21000 Novi Sad, Serbia.
| | | | | |
Collapse
|
25
|
Erman B. Relationships between ligand binding sites, protein architecture and correlated paths of energy and conformational fluctuations. Phys Biol 2011; 8:056003. [DOI: 10.1088/1478-3975/8/5/056003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Ma B, Tsai CJ, Haliloğlu T, Nussinov R. Dynamic allostery: linkers are not merely flexible. Structure 2011; 19:907-17. [PMID: 21742258 PMCID: PMC6361528 DOI: 10.1016/j.str.2011.06.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/05/2011] [Accepted: 06/07/2011] [Indexed: 12/19/2022]
Abstract
Most proteins consist of multiple domains. How do linkers efficiently transfer information between sites that are on different domains to activate the protein? Mere flexibility only implies that the conformations would be sampled. For fast timescales between triggering events and cellular response, which often involves large conformational change, flexibility on its own may not constitute a good solution. We posit that successive conformational states along major allosteric propagation pathways are pre-encoded in linker sequences where each state is encoded by the previous one. The barriers between these states that are hierarchically populated are lower, achieving faster timescales even for large conformational changes. We further propose that evolution has optimized the linker sequences and lengths for efficiency, which explains why mutations in linkers may affect protein function and review the literature in this light.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Türkan Haliloğlu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, Bebek-Istanbul 34342, Turkey
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
27
|
Luccioli S, Imparato A, Lepri S, Piazza F, Torcini A. Discrete breathers in a realistic coarse-grained model of proteins. Phys Biol 2011; 8:046008. [PMID: 21670494 DOI: 10.1088/1478-3975/8/4/046008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the results of molecular dynamics simulations of an off-lattice protein model featuring a physical force-field and amino-acid sequence. We show that localized modes of nonlinear origin, discrete breathers (DBs), emerge naturally as continuations of a subset of high-frequency normal modes residing at specific sites dictated by the native fold. DBs are time-periodic, space-localized vibrational modes that exist generically in nonlinear discrete systems and are known for their resilience and ability to concentrate energy for long times. In the case of the small β-barrel structure that we consider, DB-mediated localization occurs on the turns connecting the strands. At high energies, DBs stabilize the structure by concentrating energy on a few sites, while their collapse marks the onset of large-amplitude fluctuations of the protein. Furthermore, we show how breathers develop as energy-accumulating centres following perturbations even at distant locations, thus mediating efficient and irreversible energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a local static distortion of the native fold. Altogether, the combination of these two nonlinear effects may provide a ready means for remotely controlling local conformational changes in proteins.
Collapse
Affiliation(s)
- Stefano Luccioli
- CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Gur M, Erman B. Quasi-harmonic analysis of mode coupling in fluctuating native proteins. Phys Biol 2010; 7:046006. [DOI: 10.1088/1478-3975/7/4/046006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 2010; 35:539-46. [PMID: 20541943 PMCID: PMC3018770 DOI: 10.1016/j.tibs.2010.04.009] [Citation(s) in RCA: 621] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/25/2010] [Accepted: 04/29/2010] [Indexed: 01/11/2023]
Abstract
Single molecule and NMR measurements of protein dynamics increasingly uncover the complexity of binding scenarios. Here, we describe an extended conformational selection model that embraces a repertoire of selection and adjustment processes. Induced fit can be viewed as a subset of this repertoire, whose contribution is affected by the bond types stabilizing the interaction and the differences between the interacting partners. We argue that protein segments whose dynamics are distinct from the rest of the protein ('discrete breathers') can govern conformational transitions and allosteric propagation that accompany binding processes and, as such, might be more sensitive to mutational events. Additionally, we highlight the dynamic complexity of binding scenarios as they relate to events such as aggregation and signalling, and the crowded cellular environment.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, PO Box 260., H-1444 Budapest 8, Hungary.
| | | | | |
Collapse
|
31
|
Haliloglu T, Gul A, Erman B. Predicting important residues and interaction pathways in proteins using Gaussian Network Model: binding and stability of HLA proteins. PLoS Comput Biol 2010; 6:e1000845. [PMID: 20628622 PMCID: PMC2900293 DOI: 10.1371/journal.pcbi.1000845] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/02/2010] [Indexed: 01/07/2023] Open
Abstract
A statistical thermodynamics approach is proposed to determine structurally and functionally important residues in native proteins that are involved in energy exchange with a ligand and other residues along an interaction pathway. The structure-function relationships, ligand binding and allosteric activities of ten structures of HLA Class I proteins of the immune system are studied by the Gaussian Network Model. Five of these models are associated with inflammatory rheumatic disease and the remaining five are properly functioning. In the Gaussian Network Model, the protein structures are modeled as an elastic network where the inter-residue interactions are harmonic. Important residues and the interaction pathways in the proteins are identified by focusing on the largest eigenvalue of the residue interaction matrix. Predicted important residues match those known from previous experimental and clinical work. Graph perturbation is used to determine the response of the important residues along the interaction pathway. Differences in response patterns of the two sets of proteins are identified and their relations to disease are discussed. We propose a statistical thermodynamics model for determining structurally and functionally important residues in ligand-protein interactions. Our method identifies the path that the protein uses in transferring information from one point to the other. We show that a few energetically active residues are most efficient in energy exchange with the surroundings acting as ‘energy gates’. The remaining important residues that we identify are situated along the interaction path. These are the hub residues. Strong correlations exist between energy gates and hub residues along the interaction path, thus relating to allostery and cooperative binding. We studied the structure-function, ligand binding and allosteric activities of ten models of HLA Class I proteins of the immune system. Five of these models belong to the HLA-B*2705 allele and are strongly associated with a chronic inflammatory rheumatic disease. The remaining five from the HLA-B*2709 allele of the same protein are the corresponding properly functioning ones. We show that differences in the contact maps of the two types lead to significant and consistent changes in the fluctuation profile, making the HLA-B*2705 alleles respond too strongly to perturbation.
Collapse
Affiliation(s)
- Turkan Haliloglu
- Polymer Research Center, Bogazici University, Bebek, Istanbul, Turkey
- * E-mail: (TH); (BE)
| | - Ahmet Gul
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Burak Erman
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
- * E-mail: (TH); (BE)
| |
Collapse
|
32
|
Sun W, He J. Understanding on the residue contact network using the log-normal cluster model and the multilevel wheel diagram. Biopolymers 2010; 93:904-16. [DOI: 10.1002/bip.21494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Eisenhower B, Mezić I. Targeted activation in deterministic and stochastic systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:026603. [PMID: 20365668 DOI: 10.1103/physreve.81.026603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Indexed: 05/29/2023]
Abstract
Metastable escape is ubiquitous in many physical systems and is becoming a concern in engineering design as these designs (e.g., swarms of vehicles, coupled building energetics, nanoengineering, etc.) become more inspired by dynamics of biological, molecular and other natural systems. In light of this, we study a chain of coupled bistable oscillators which has two global conformations and we investigate how specialized or targeted disturbance is funneled in an inverse energy cascade and ultimately influences the transition process between the conformations. We derive a multiphase averaged approximation to these dynamics which illustrates the influence of actions in modal coordinates on the coarse behavior of this process. An activation condition that predicts how the disturbance influences the rate of transition is then derived. The prediction tools are derived for deterministic dynamics and we also present analogous behavior in the stochastic setting and show a divergence from Kramers activation behavior under targeted activation conditions.
Collapse
Affiliation(s)
- Bryan Eisenhower
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106 USA.
| | | |
Collapse
|
34
|
Abstract
Proteins are large and complex molecular machines. In order to perform their function, most of them need energy, e.g. either in the form of a photon, as in the case of the visual pigment rhodopsin, or through the breaking of a chemical bond, as in the presence of adenosine triphosphate (ATP). Such energy, in turn, has to be transmitted to specific locations, often several tens of A away from where it is initially released. Here we show, within the framework of a coarse-grained nonlinear network model, that energy in a protein can jump from site to site with high yields, covering in many instances remarkably large distances. Following single-site excitations, few specific sites are targeted, systematically within the stiffest regions. Such energy transfers mark the spontaneous formation of a localized mode of nonlinear origin at the destination site, which acts as an efficient energy-accumulating center. Interestingly, yields are found to be optimum for excitation energies in the range of biologically relevant ones.
Collapse
Affiliation(s)
- Francesco Piazza
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Biophysique Statistique, ITP-SB, BSP-720, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
35
|
Yogurtcu ON, Gur M, Erman B. Statistical thermodynamics of residue fluctuations in native proteins. J Chem Phys 2009; 130:095103. [PMID: 19275429 DOI: 10.1063/1.3078517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Statistical thermodynamics of residue fluctuations of native proteins in a temperature, pressure, and force reservoir is formulated. The general theory is discussed in terms of harmonic and anharmonic fluctuations of residues. The two elastic network models based on the harmonic approximation, the anisotropic network and the Gaussian network models are discussed as the limiting cases of the general theory. The heat capacity and the correlations between the energy fluctuations and residue fluctuations are obtained for the harmonic approximation. The formulation is extended to large fluctuations of residues in order to account for effects of anharmonicity. The fluctuation probability function is constructed for this purpose as a tensorial Hermite series expansion with higher order moments of fluctuations as coefficients. Evaluation of the higher order moments using the proposed statistical thermodynamics model is explained. The formulation is applied to a hexapeptide and the fluctuations of residues obtained by molecular dynamics simulations are characterized in the framework of the model developed. In particular, coupling of two different modes in the nonlinear model is discussed in detail.
Collapse
Affiliation(s)
- Osman N Yogurtcu
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | | | | |
Collapse
|
36
|
|