1
|
Sharaf B, Lewis S, Choung D, Goyal A, Scheitler KM, Hong LS, Blaha CD, Hanna B, Chang K, Yuen J, Oh Y, Shin H, Grewal S, Chang JW, Miller K, Lee KH. Expansion of stereotactic work envelope using transformation matrices and geometric algebra for neurosurgery. Biomed Eng Lett 2025; 15:169-178. [PMID: 39781054 PMCID: PMC11704102 DOI: 10.1007/s13534-024-00434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 01/11/2025] Open
Abstract
Stereotactic systems have traditionally used Cartesian coordinate combined with linear algebraic mathematical models to navigate the brain. Previously, the development of a novel stereotactic system allowed for improved patient comfort, reduced size, and carried through a simplified interface for surgeons. The system was designed with a work envelope and trajectory range optimized for deep brain stimulation applications only. However, it could be applied in multiple realms of neurosurgery by spanning the entire brain. To this end, a system of translational and rotational adapters was developed to allow total brain navigation capabilities. Adapters were designed to fit onto a Skull Anchor Key of a stereotactic frame system to allow for rotation and translation of the work envelope. Mathematical formulas for the rotations and translations associated with each adapter were developed. Mechanical and image-guided accuracies were examined using a ground truth imaging phantom. The system's clinical workflow and its ability to reliably and accurately be used in a surgical scenario were investigated using a cadaver head and computed tomography guidance. Eight adapters designed and 3D-printed allowed the work envelope to be expanded to the entire head. The mechanical error was 1.75 ± 0.09 mm (n = 20 targets), and the cadaver surgical targeting error was 1.18 ± 0.28 mm (n = 10 implantations). The novel application of conventional and geometric algebra in conjunction with hardware modifications significantly expands the work envelope of the stereotactic system to the entire cranial cavity. This approach greatly extends the clinical applications by the system.
Collapse
Affiliation(s)
- Basel Sharaf
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN USA
| | | | - David Choung
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
| | - Abhinav Goyal
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA
| | - Kristen M. Scheitler
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA
| | - Lydia S. Hong
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA
| | | | - Barbara Hanna
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
| | - Kyungwon Chang
- Department of Neurosurgery, Samsung Medical Center, Seoul, South Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jason Yuen
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
| | - Yoonbae Oh
- NaviNetics, Inc, Rochester, MN USA
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA
| | - Hojin Shin
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA
| | - Sanjeet Grewal
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL USA
| | - Jin Woo Chang
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, South Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kai Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA
| | - Kendall H. Lee
- NaviNetics, Inc, Rochester, MN USA
- Neural Engineering Laboratories, Mayo Clinic, Rochester, MN USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN USA
- Department of Neurosurgery, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
2
|
Pivazyan G, Sandhu FA, Beaufort AR, Cunningham BW. Basis for error in stereotactic and computer-assisted surgery in neurosurgical applications: literature review. Neurosurg Rev 2022; 46:20. [PMID: 36536143 DOI: 10.1007/s10143-022-01928-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Technological advancements in optoelectronic motion capture systems have allowed for the development of high-precision computer-assisted surgery (CAS) used in cranial and spinal surgical procedures. Errors generated sequentially throughout the chain of components of CAS may have cumulative effect on the accuracy of implant and instrumentation placement - potentially affecting patient outcomes. Navigational integrity and maintenance of fidelity of optoelectronic data is the cornerstone of CAS. Error reporting measures vary between studies. Understanding error generation, mechanisms of propagation, and how they relate to workflow can assist clinicians in error mitigation and improve accuracy during navigation in neurosurgical procedures. Diligence in planning, fiducial positioning, system registration, and intra-operative workflow have the potential to improve accuracy and decrease disparity between planned and final instrumentation and implant position. This study reviews the potential errors associated with each step in computer-assisted surgery and provides a basis for disparity in intrinsic accuracy versus achieved accuracy in the clinical operative environment.
Collapse
Affiliation(s)
- Gnel Pivazyan
- Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA.
- Musculoskeletal Education Center, Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, MD, USA.
| | - Faheem A Sandhu
- Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | | | - Bryan W Cunningham
- Musculoskeletal Education Center, Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, MD, USA
| |
Collapse
|
3
|
Rusheen AE, Goyal A, Owen RL, Berning EM, Bothun DT, Giblon RE, Blaha CD, Welker KM, Huston J, Bennet KE, Oh Y, Fagan AJ, Lee KH. The development of ultra-high field MRI guidance technology for neuronavigation. J Neurosurg 2022; 137:1265-1277. [PMID: 35334465 PMCID: PMC10193481 DOI: 10.3171/2021.11.jns211078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Magnetic resonance imaging at 7T offers improved image spatial and contrast resolution for visualization of small brain nuclei targeted in neuromodulation. However, greater image geometric distortion and a lack of compatible instrumentation preclude implementation. In this report, the authors detail the development of a stereotactic image localizer and accompanying imaging sequences designed to mitigate geometric distortion, enabling accurate image registration and surgical planning of basal ganglia nuclei. METHODS Magnetization-prepared rapid acquisition with gradient echo (MPRAGE), fast gray matter acquisition T1 inversion recovery (FGATIR), T2-weighted, and T2*-weighted sequences were optimized for 7T in 9 human subjects to visualize basal ganglia nuclei, minimize image distortion, and maximize target contrast-to-noise and signal-to-noise ratios. Extracranial spatial distortions were mapped to develop a skull-contoured image localizer embedded with spherical silicone fiducials for improved MR image registration and target guidance. Surgical plan accuracy testing was initially performed in a custom-developed MRI phantom (n = 5 phantom studies) and finally in a human trial. RESULTS MPRAGE and T2*-weighted sequences had the best measures among global measures of image quality (3.8/4, p < 0.0001; and 3.7/4, p = 0.0002, respectively). Among basal ganglia nuclei, FGATIR outperformed MPRAGE for globus pallidus externus (GPe) visualization (2.67/4 vs 1.78/4, p = 0.008), and FGATIR, T2-weighted imaging, and T2*-weighted imaging outperformed MPRAGE for substantia nigra visualization (1.44/4 vs 2.56/4, p = 0.04; vs 2.56/4, p = 0.04; vs 2.67/4, p = 0.003). Extracranial distortion was lower in the head's midregion compared with the base and apex ( 1.17-1.33 mm; MPRAGE and FGATIR, p < 0.0001; T2-weighted imaging, p > 0.05; and T2*-weighted imaging, p = 0.013). Fiducial placement on the localizer in low distortion areas improved image registration (fiducial registration error, 0.79-1.19 mm; p < 0.0001) and targeting accuracy (target registration error, 0.60-1.09 mm; p = 0.04). Custom surgical software and the refined image localizer enabled successful surgical planning in a human trial (fiducial registration error = 1.0 mm). CONCLUSIONS A skull-contoured image localizer that accounts for image distortion is necessary to enable high-accuracy 7T imaging-guided targeting for surgical neuromodulation. These results may enable improved clinical efficacy for the treatment of neurological disease.
Collapse
Affiliation(s)
- Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester
- Medical Scientist Training Program, Mayo Clinic, Rochester
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester
- Medical Scientist Training Program, Mayo Clinic, Rochester
| | - Robert L. Owen
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester
| | | | - Dane T. Bothun
- Department of Neurologic Surgery, Mayo Clinic, Rochester
| | - Rachel E. Giblon
- Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester
| | | | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester; and
| | | | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester
| | - Andrew J. Fagan
- Department of Radiology, Mayo Clinic, Rochester; and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Edwards CA, Goyal A, Rusheen AE, Kouzani AZ, Lee KH. DeepNavNet: Automated Landmark Localization for Neuronavigation. Front Neurosci 2021; 15:670287. [PMID: 34220429 PMCID: PMC8245762 DOI: 10.3389/fnins.2021.670287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Functional neurosurgery requires neuroimaging technologies that enable precise navigation to targeted structures. Insufficient image resolution of deep brain structures necessitates alignment to a brain atlas to indirectly locate targets within preoperative magnetic resonance imaging (MRI) scans. Indirect targeting through atlas-image registration is innately imprecise, increases preoperative planning time, and requires manual identification of anterior and posterior commissure (AC and PC) reference landmarks which is subject to human error. As such, we created a deep learning-based pipeline that consistently and automatically locates, with submillimeter accuracy, the AC and PC anatomical landmarks within MRI volumes without the need for an atlas. Our novel deep learning pipeline (DeepNavNet) regresses from MRI scans to heatmap volumes centered on AC and PC anatomical landmarks to extract their three-dimensional coordinates with submillimeter accuracy. We collated and manually labeled the location of AC and PC points in 1128 publicly available MRI volumes used for training, validation, and inference experiments. Instantiations of our DeepNavNet architecture, as well as a baseline model for reference, were evaluated based on the average 3D localization errors for the AC and PC points across 311 MRI volumes. Our DeepNavNet model significantly outperformed a baseline and achieved a mean 3D localization error of 0.79 ± 0.33 mm and 0.78 ± 0.33 mm between the ground truth and the detected AC and PC points, respectively. In conclusion, the DeepNavNet model pipeline provides submillimeter accuracy for localizing AC and PC anatomical landmarks in MRI volumes, enabling improved surgical efficiency and accuracy.
Collapse
Affiliation(s)
- Christine A Edwards
- School of Engineering, Deakin University, Geelong, VIC, Australia.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic College of Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic College of Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic College of Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Malbert CH. Open-source 3D printable frameless stereotaxic system for young and adult pigs. J Neurosci Methods 2021; 359:109222. [PMID: 34004201 DOI: 10.1016/j.jneumeth.2021.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Here we present an open-source solution, comprising several 3D-printable mechanical pieces and software tools, for frameless stereotaxic targeting in young and adult pigs of varying weights. NEW METHOD Localization was achieved using an IR camera and CT imaging. The positions of the tools were followed, after registration of the pig stereotaxic space, with a CT scan and open-source brain atlas. The system was used to target the lateral ventricle and the subthalamic nucleus (STN) in one piglet and two adult Yucatan miniature pigs, which were either normal weight or obese. RESULTS AND CONCLUSIONS Positive targeting was confirmed in the first trial for all subjects, either by radiopaque CT enhancement of the ventricle or actual recording of the STN electrophysiological signature. We conclude that open-source freely available models, easily built with low-end 3D printers, and their associated software can be effectively used for brain surgery in pigs, at a minimal cost, irrespective of the weight of the animal.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Department, Human Nutrition, INRAE, 16 Le clos, Saint-Gilles, 35590, France.
| |
Collapse
|
6
|
Trovatelli M, Brizzola S, Zani DD, Castellano A, Mangili P, Riva M, Woolley M, Johnson D, Rodriguez Y Baena F, Bello L, Falini A, Secoli R. Development and in vivo assessment of a novel MRI-compatible headframe system for the ovine animal model. Int J Med Robot 2021; 17:e2257. [PMID: 33817973 DOI: 10.1002/rcs.2257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The brain of sheep has primarily been used in neuroscience as an animal model because of its similarity to the human brain, in particular if compared to other models such as the lissencephalic rodent brain. Their brain size also makes sheep an ideal model for the development of neurosurgical techniques using conventional clinical CT/MRI scanners and stereotactic systems for neurosurgery. METHODS In this study, we present the design and validation of a new CT/MRI compatible head frame for the ovine model and software, with its assessment under two real clinical scenarios. RESULTS Ex-vivo and in vivo trial results report an average linear displacement of the ovine head frame during conventional surgical procedures of 0.81 mm for ex-vivo trials and 0.68 mm for in vivo tests, respectively. CONCLUSIONS These trial results demonstrate the robustness of the head frame system and its suitability to be employed within a real clinical setting.
Collapse
Affiliation(s)
- Marco Trovatelli
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Stefano Brizzola
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Davide Danilo Zani
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and C.E.R.M.A.C., Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Mangili
- Medical Physics Unit, Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Riva
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, Milan, Italy
| | - Max Woolley
- Renishaw Neuro Solutions Ltd., Wotton-Under-Edge, UK
| | - Dave Johnson
- Renishaw Neuro Solutions Ltd., Wotton-Under-Edge, UK
| | - Ferdinando Rodriguez Y Baena
- The Mechatronics in Medicine Laboratory, Department of Mechanical Engineering, Imperial College London, London, UK
| | - Lorenzo Bello
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and C.E.R.M.A.C., Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Riccardo Secoli
- The Mechatronics in Medicine Laboratory, Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Rusheen A, Barath AS, Goyal A, Barnett JH, Gifford BT, Bennet K, Blaha CD, Goerss SJ, Oh Y, Lee KH. A compact stereotactic system for image-guided surgical intervention. J Neural Eng 2020; 17. [PMID: 33142275 DOI: 10.1088/1741-2552/abc743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Stereotactic technology enables fine navigation to small structures in the human body. While current stereotactic systems facilitate accurate targeting, they are mechanically cumbersome and limited in scope. Here, we hypothesized that a stereotactic system could be developed with a reduced footprint while maintaining broad targeting capabilities in order to improve versatility in frame placement location and surgical workflow. APPROACH We designed a stereotactic system around the center-of-arc principle, with mechanical properties that would enable a compact design and ample targeting and trajectory maneuverability. To examine the opportunity for a low-cost rapidly-deployable system we developed two fabrication variants, one using 3D-printing and the other using conventional machining. Mechanical and image-guided accuracies were tested in phantom studies with magnetic resonance imaging (MRI) and computed tomography. We assessed the system's surgical workflow and its ability to reliably and accurately implant electrodes in deep brain stimulation (DBS) surgery using human cadaveric head specimens. MAIN RESULTS We developed a small 7.7 x 5.4 cm2device platform that rigidly mounts to curvilinear bone and supports the attachment of surgical instrumentation. Attachment of two surgical instruments, an imaging localizer and a compact targeting device, demonstrated successful MRI-guided intervention in phantom studies with a vector error of 1.79 ± 0.41 mm. Evaluation of the 3D-printed system for DBS surgery confirmed ease of device platform attachment and instrument functionality, as well as demonstrated a surgical targeting accuracy of 1.83 ± 0.15 mm. In addition, we found the surgical time to be 78.3 ± 5.4 min for bilateral electrode implantation. SIGNIFICANCE We developed a light and compact stereotactic system whose accuracy is on par with those used clinically. This technology is suitable for clinical translation and its flexibility in positioning will seamlessly expand the capabilities for stereotaxy to treat a wide range of conditions, both within neurosurgery and beyond.
Collapse
Affiliation(s)
- Aaron Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Abhijeet S Barath
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | | | - Benjamin T Gifford
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Kevin Bennet
- Division of Engineering, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Stephan J Goerss
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| |
Collapse
|
8
|
Slopsema JP, Canna A, Uchenik M, Lehto LJ, Krieg J, Wilmerding L, Koski DM, Kobayashi N, Dao J, Blumenfeld M, Filip P, Min HK, Mangia S, Johnson MD, Michaeli S. Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T. Neuroimage 2020; 224:117357. [PMID: 32916285 PMCID: PMC7783780 DOI: 10.1016/j.neuroimage.2020.117357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows × 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°−360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.
Collapse
Affiliation(s)
| | - Antonietta Canna
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | | | - Lauri J Lehto
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota
| | | | - Dee M Koski
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Naoharu Kobayashi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota
| | | | - Pavel Filip
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota; Institute for Translational Neuroscience, University of Minnesota
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota.
| |
Collapse
|