1
|
Guillen A, Truong DQ, Cakmak YO, Li S, Datta A. The interplay between pulse width and activation depth in TENS: a computational study. FRONTIERS IN PAIN RESEARCH 2025; 6:1526277. [PMID: 40313397 PMCID: PMC12043676 DOI: 10.3389/fpain.2025.1526277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Background Transcutaneous electrical nerve stimulation (TENS) has been a commonly used modality to relieve aches and pain for over 40 years. Commercially available devices provide multiple therapy modes involving a different combination of frequency and pulse width with intensity. While frequency sets sensation, intensity helps determine tolerability, longer pulse width is reported to induce a feeling of deeper stimulation. In fact, longer pulse width has been empirically shown to deliver current into deeper tissues, but in context of other electrical stimulation modalities. The goal of this study was to unpack the relationship between pulse width and activation depth in TENS. Methods A highly realistic, anatomically-based, 3D finite element model of the forearm was used to simulate the electric field (E-field) distribution, as the pulse width is varied. A typical titration-guided mechanism was used to obtain the strength-duration (S-D) curves of a sensory McIntyre-Richardson-Grill (MRG) axonal model simulating the pain-transmitting A-delta fibers. The pulse widths tested ranged from 30 μs to 495 μs. Results As expected, shorter pulse widths required more current to achieve activation, resulting in a larger E-field. The S-D curve of the target median nerve indicates a rheobase of 1.75 mA and a chronaxie of 232 µs. When the applied currents are the same, shorter pulse widths result in a smaller volume of tissue activated (VTA) compared to the longer pulse widths. A 21 fold difference in VTA was found between the longest and shortest pulse widths considered. For the conditions tested in the study, an increase in pulse width resulted in an increase in activation depth, exhibiting a linear relationship. Conclusion Our findings highlight the impact of pulse width on activation depth. While choice of a given therapy mode is usually based on an ad-hoc desirable sensation basis, medical professionals may consider advocating a certain therapy mode based on the depth of the intended target nerve.
Collapse
Affiliation(s)
- Alexander Guillen
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Dennis Q. Truong
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Yusuf O. Cakmak
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- Biomedical Engineering, City College of New York, New York, NY, United States
| |
Collapse
|
2
|
Nasimova M, Khadka N, Bikson M. Computational modeling of neuromuscular activation by transcutaneous electrical nerve stimulation to the lower back. Biomed Phys Eng Express 2025; 11:035004. [PMID: 40073449 DOI: 10.1088/2057-1976/adbf9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Objectives.Transcutaneous Electrical Nerve Stimulation (TENS) to the lower back is an established electrical therapy for acute and chronic back pain. The efficacy and mechanisms of lower back TENS depend on the penetration depth of electrical current. We compare the intensity and spatial extent (depth) of current flow in the body during TENS with varied electrode positions/shapes on the human back.Materials and Methods.A high-resolution MRI-derived anatomical model of the back was developed, considering major tissue compartments, including skin and muscles. TENS with upper and lower back electrode positions and varied electrode shapes (square, circular, rectangular) were simulated. An exemplary 50 mA current was applied under quasistatic approximation and quasi-uniform electric field assumption of 6.15 V m-1(low), 12.3 V m-1(mid), and 24.6 V m-1(high) neuromuscular activation thresholds were considered.Results.Under all simulated TENS conditions (50 mA), electric fields at the skin exceed the high threshold (consistent with peripheral nerve activation) and at least some muscle regions exceed the mid threshold. Muscle activation was influenced by the anatomy of muscle in the medial-lateral direction and upper-lower back. The electrode shape had minimal effect on deep tissue current penetration.Conclusions.Our simulations indicate significant current penetration into back tissue (electric fields above low threshold) to >8 cm in all TENS conditions simulated, consistent with nerve and muscle activation.Significance.Anatomically precise models of upper and lower back TENS show current penetration to deep muscle, supporting direct muscle stimulation driving clinical benefits.
Collapse
Affiliation(s)
- Mohigul Nasimova
- Department of Biomedical Engineering, The City College of New York, NY, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, NY, United States of America
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, NY, United States of America
| |
Collapse
|
3
|
Tovbis D, Lee E, Koh RGL, Jeong R, Agur A, Yoo PB. Enhancing the selective electrical activation of human vagal nerve fibers: a comparative computational modeling study with validation in a rat sciatic model. J Neural Eng 2023; 20:066012. [PMID: 37963401 DOI: 10.1088/1741-2552/ad0c60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Objective.Vagus nerve stimulation (VNS) is an emerging treatment option for a myriad of medical disorders, where the method of delivering electrical pulses can vary depending on the clinical indication. In this study, we investigated the relative effectiveness of electrically activating the cervical vagus nerve among three different approaches: nerve cuff electrode stimulation (NCES), transcutaneous electrical nerve stimulation (TENS), and enhanced TENS (eTENS). The objectives were to characterize factors that influenced nerve activation and to compare the nerve recruitment properties as a function of nerve fiber diameter.Methods.The Finite Element Model, based on data from the Visible Human Project, was implemented in COMSOL. The three simulation types were compared under a range of vertical and horizontal displacements relative to the location of the vagus nerve. Monopolar anodic stimulation was examined, along with latency and activation of different fiber sizes. Nerve activation was determined via the activating function and McIntyre-Richardson-Grill models, and activation thresholds were validated in anin-vivorodent model.Results.While NCES produced the lowest activation thresholds, eTENS generally performed superior to TENS under the range of conditions and fiber diameters, producing activation thresholds up to three times lower than TENS. eTENS also preserved its enhancement when surface electrodes were displaced away from the nerve. Anodic stimulation revealed an inhibitory region that removed eTENS benefits. eTENS also outperformed TENS by up to four times when targeting smaller diameter nerve fibers, scaling similar to a cuff electrode. In latency and activation of smaller diameter nerve fibers, eTENS results resembled those of NCES more than a TENS electrode. Activation threshold ratios were consistent inin-vivovalidation.Significance.Our findings expand upon previously identified mechanisms for eTENS and further demonstrate how eTENS emulates a nerve cuff electrode to achieve lower activation thresholds. This work further characterizes considerations required for VNS under the three stimulation methods.
Collapse
Affiliation(s)
- Daniel Tovbis
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Eugene Lee
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| | - Ryan G L Koh
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Rania Jeong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Anne Agur
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Paul B Yoo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Gu XS, Ming D, Chu XL, Song XZ, Li YR, Wu ZR, Li Q, Li QW. An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection. Neural Regen Res 2023; 18:683-688. [DOI: 10.4103/1673-5374.350215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Verma N, Graham RD, Mudge J, Trevathan JK, Franke M, Shoffstall AJ, Williams J, Dalrymple AN, Fisher LE, Weber DJ, Lempka SF, Ludwig KA. Augmented Transcutaneous Stimulation Using an Injectable Electrode: A Computational Study. Front Bioeng Biotechnol 2021; 9:796042. [PMID: 34988068 PMCID: PMC8722711 DOI: 10.3389/fbioe.2021.796042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Minimally invasive neuromodulation technologies seek to marry the neural selectivity of implantable devices with the low-cost and non-invasive nature of transcutaneous electrical stimulation (TES). The Injectrode® is a needle-delivered electrode that is injected onto neural structures under image guidance. Power is then transcutaneously delivered to the Injectrode using surface electrodes. The Injectrode serves as a low-impedance conduit to guide current to the deep on-target nerve, reducing activation thresholds by an order of magnitude compared to using only surface stimulation electrodes. To minimize off-target recruitment of cutaneous fibers, the energy transfer efficiency from the surface electrodes to the Injectrode must be optimized. TES energy is transferred to the Injectrode through both capacitive and resistive mechanisms. Electrostatic finite element models generally used in TES research consider only the resistive means of energy transfer by defining tissue conductivities. Here, we present an electroquasistatic model, taking into consideration both the conductivity and permittivity of tissue, to understand transcutaneous power delivery to the Injectrode. The model was validated with measurements taken from (n = 4) swine cadavers. We used the validated model to investigate system and anatomic parameters that influence the coupling efficiency of the Injectrode energy delivery system. Our work suggests the relevance of electroquasistatic models to account for capacitive charge transfer mechanisms when studying TES, particularly when high-frequency voltage components are present, such as those used for voltage-controlled pulses and sinusoidal nerve blocks.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jonah Mudge
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | | | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Justin Williams
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
| | - Ashley N. Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lee E. Fisher
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Douglas J. Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Rehab Neural Engineering Labs (RNEL), Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe)–Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
6
|
Thomas C, Truong DQ, Lee K, Deblieck C, Androulakis XM, Datta A. Determination of Current Flow Induced by Transcutaneous Electrical Nerve Stimulation for the Treatment of Migraine: Potential for Optimization. FRONTIERS IN PAIN RESEARCH 2021; 2:753454. [PMID: 35295421 PMCID: PMC8915572 DOI: 10.3389/fpain.2021.753454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Transcutaneous electrical nerve stimulation (TENS) for migraine involves the application of pulsatile stimulation through electrodes placed on the forehead to target the underlying trigeminal nerves. It is a simple, safe modality and has secured clinical approval in several markets including the European Union and the United States. Despite nearing almost 7 years of use (postclinical approval), the exact mechanism of action is not fully known. Guided by the need to stimulate the trigeminal nerves bilaterally, electrode dimensions are simply required to extend enough to cover the underlying nerves. The goal of this study is to examine induced current flow [magnitude and spatial distribution of electric field (EF)] and another driver of stimulation [activating function (AF)] due to TENS therapy for migraine for the first time. We further consider the effect of changing the electrode dimension and shape and propose a design modification to deliver optimal flow. Methods: We developed the first ultra-high-resolution finite element (FE) model of TENS for migraine incorporating the target supratrochlear (ST) and the supraorbital (SO) nerves. We first simulated the clinically approved V-shaped geometry. We then considered three additional designs: extended V-shaped, idealized pill-shaped, and finally an extended V-shaped but with greater contact spacing (extended V-shaped +CS). Results: Our findings revealed that the clinically approved electrode design delivered substantially higher mean current flow to the ST nerve in comparison with the SO nerves (Medial: 53% and Lateral: 194%). Consideration of an extended design (~10 mm longer and ~ 4 mm shorter) and a pill-like design had negligible impact on the induced current flow pattern. The extended V-shaped +CS montage delivered relatively comparable current flow to each of the three target nerves. The EF induced in the ST nerve was 49 and 141% higher in the Medial and Lateral SO nerve, respectively. When considering maximum induced values, the delivery of comparable stimulation was further apparent. Given the existing electrode design's established efficacy, our results imply that preferential targeting of the ST nerve is related to the mechanism of action. Additionally, if comparable targeting of all three nerves continues to hold promise, the extended V-shaped +CS montage presents an optimized configuration to explore in clinical studies.
Collapse
Affiliation(s)
- Chris Thomas
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Dennis Q Truong
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
| | - Kiwon Lee
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- Ybrain Inc., Seongnam-si, South Korea
| | - Choi Deblieck
- Academic Center for Electroconvulsive Therapy (ECT) and Neuromodulation, University Psychiatric Center, University of Leuven, Leuven, Belgium
| | - Xiao Michelle Androulakis
- Neurology, Columbia VA Health System, Columbia, SC, United States
- School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Woodbridge, NJ, United States
- City College of New York, New York, NY, United States
| |
Collapse
|
7
|
Peroneal Electric Transcutaneous NeuroModulation (eTNM ®): A Novel Method for the Treatment of the Overactive Bladder. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4016346. [PMID: 34659685 PMCID: PMC8514907 DOI: 10.1155/2021/4016346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/18/2021] [Indexed: 01/20/2023]
Abstract
Overactive bladder syndrome (OAB) is a prevalent medical problem with a significant impact on the quality of life of the affected individuals. Pharmacotherapy is considered the main treatment method, although it is discontinued in a significant proportion of patients due to inefficacy or associated side effects. If pharmacotherapy fails, patients can undergo peripheral neuromodulation of the somatic nerves of the lower limb or sacral neuromodulation; however, neither of these represents an ideal therapeutic tool. The Peroneal electric Transcutaneous NeuroModulation (Peroneal eTNM®), based on the selective stimulation of the peroneal nerve, is the new fully noninvasive neuromodulation method intended to treat OAB. The URIS® neuromodulation system, engineered to provide Peroneal eTNM®, consists of the URIS® device, URIS® active electrodes, and the biofeedback foot sensor (BFS). The unique design of the URIS® device and URIS® active electrodes allows for the use of a low voltage and current during neuromodulation, which significantly reduces the unpleasant sensations. The BFS allows for precise localization of the active electrodes and for continuous adjustment of the voltage and frequency to achieve the optimal therapeutic effect. The URIS® system adopts several principles of telemedicine, which makes it compatible with the US Food and Drug Administration (FDA) and European Union (EU) regulations for home-based use. This article describes both the Peroneal eTNM® method and the URIS® neuromodulation system, including its technical specifications and data from laboratory testing. Preclinical and early clinical data demonstrate the feasibility of this new method for noninvasive OAB treatment and possible implications for clinical practice.
Collapse
|