1
|
Chen D, Cao C, Gong J, Huang J, Xiao J, Huang Q, Guo Y, Li Y. Decoding Single-Pellet Retrieval Task From Local Field Potentials in Pre- and Post-Stroke Motor Areas: Insights Into Interhemispheric Connectivity Difference. IEEE Trans Biomed Eng 2025; 72:1316-1327. [PMID: 40030380 DOI: 10.1109/tbme.2024.3499319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Intracortical brain-machine interfaces (iBMIs) hold promise for restoring communication and movement in stroke-paralyzed individuals. Recent studies have demonstrated the potential of using local field potentials (LFPs) for decoding single-pellet retrieval (SPR) tasks in iBMIs. However, most research has relied on LFPs from healthy rats rather than those affected by stroke. This study aimed to investigate the feasibility of utilizing LFPs from both the right and left (stroke) cortical forelimb areas (CFAs) for the SPR tasks decoding under both pre- and post-stroke conditions. METHODS LFPs were recorded via microelectrode arrays implanted into CFAs of eight rats trained to perform the SPR tasks. The relative spectral power method was used to represent frequency information, and random forest classification differentiated SPR tasks from resting states. We also assessed interhemispheric connectivity, including correlation, coherence, and phase-amplitude coupling (PAC), to compare differences between the SPR tasks and the resting states under both pre- and post-stroke conditions. RESULTS Our findings indicated that the relative PS method with LFPs achieves 87.10% 9.2% accuracy in post-stoke SPR decoding, where high gamma is crucial. Additionally, we observed changes in PACs from the right to the left sensorimotor cortex post-stroke during the SPR tasks compared to the resting states. SIGNIFICANCE Our work provides a comprehensive insight into the role of different frequency band from LFPs in motor function recovery mechanisms, highlighting the importance of the high gamma in motor function. This research lays the foundation for developing post-stoke SPR-related BMIs.
Collapse
|
2
|
Valencia D, Mercier PP, Alimohammad A. An Efficient Brain-Switch for Asynchronous Brain-Computer Interfaces. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:130-141. [PMID: 38700963 DOI: 10.1109/tbcas.2024.3396115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Intracortical brain computer interfaces (iBCIs) utilizing extracellular recordings mainly employ in vivo signal processing application-specific integrated circuits (ASICs) to detect action potentials (spikes). Conventionally, "brain-switches" based on spiking activity have been employed to realize asynchronous (self-paced) iBCIs, estimating when the user involves in the underlying BCI task. Several studies have demonstrated that local field potentials (LFPs) can effectively replace action potentials, drastically reducing the power consumption and processing requirements of in vivo ASICs. This article presents the first LFP-based brain-switch design and implementation using gated recurrent neural networks (RNNs). Compared to the previously reported brain-switches, our design requires no exhaustive learning phase for the estimation of optimal recording channels or frequency band selection, making it more applicable to practical asynchronous iBCIs. The synthesized ASIC of the designed in vivo LFP-based feature extraction unit, in a standard 180-nm CMOS process, occupies only 0.09 mm of silicon area, and the post place-and-route synthesis results indicate that it consumes 91.87 nW of power while operating at 2 kHz. Compared to the previously published ASICs, the proposed LFP-based brain-switch consumes the least power for in vivo digital signal processing and achieves comparable state estimation performance to that of spike-based brain-switches.
Collapse
|
3
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585943. [PMID: 38562734 PMCID: PMC10983946 DOI: 10.1101/2024.03.20.585943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many anesthetics cause loss of responsiveness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examined how anesthetic doses of ketamine and dexmedetomidine affected oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics caused increases in phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varied. Activity in different subregions within a hemisphere became more anti-phase with both drugs. Local analyses within a region suggested that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. By contrast, homologous areas across hemispheres became more in-phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those in the awake state, and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
|
4
|
Tai P, Ding P, Wang F, Gong A, Li T, Zhao L, Su L, Fu Y. Brain-computer interface paradigms and neural coding. Front Neurosci 2024; 17:1345961. [PMID: 38287988 PMCID: PMC10822902 DOI: 10.3389/fnins.2023.1345961] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Brain signal patterns generated in the central nervous system of brain-computer interface (BCI) users are closely related to BCI paradigms and neural coding. In BCI systems, BCI paradigms and neural coding are critical elements for BCI research. However, so far there have been few references that clearly and systematically elaborated on the definition and design principles of the BCI paradigm as well as the definition and modeling principles of BCI neural coding. Therefore, these contents are expounded and the existing main BCI paradigms and neural coding are introduced in the review. Finally, the challenges and future research directions of BCI paradigm and neural coding were discussed, including user-centered design and evaluation for BCI paradigms and neural coding, revolutionizing the traditional BCI paradigms, breaking through the existing techniques for collecting brain signals and combining BCI technology with advanced AI technology to improve brain signal decoding performance. It is expected that the review will inspire innovative research and development of the BCI paradigm and neural coding.
Collapse
Affiliation(s)
- Pengrui Tai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Anmin Gong
- School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xi’an, China
| | - Tianwen Li
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhao
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Su
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Wang S, Zhu G, Shi L, Zhang C, Wu B, Yang A, Meng F, Jiang Y, Zhang J. Closed-Loop Adaptive Deep Brain Stimulation in Parkinson's Disease: Procedures to Achieve It and Future Perspectives. JOURNAL OF PARKINSON'S DISEASE 2023; 13:453-471. [PMID: 37182899 PMCID: PMC10357172 DOI: 10.3233/jpd-225053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a heavy burden on patients, families, and society. Deep brain stimulation (DBS) can improve the symptoms of PD patients for whom medication is insufficient. However, current open-loop uninterrupted conventional DBS (cDBS) has inherent limitations, such as adverse effects, rapid battery consumption, and a need for frequent parameter adjustment. To overcome these shortcomings, adaptive DBS (aDBS) was proposed to provide responsive optimized stimulation for PD. This topic has attracted scientific interest, and a growing body of preclinical and clinical evidence has shown its benefits. However, both achievements and challenges have emerged in this novel field. To date, only limited reviews comprehensively analyzed the full framework and procedures for aDBS implementation. Herein, we review current preclinical and clinical data on aDBS for PD to discuss the full procedures for its achievement and to provide future perspectives on this treatment.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunkui Zhang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Bing Wu
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
6
|
Savolainen OW. The significance of neural inter-frequency power correlations. Sci Rep 2021; 11:23190. [PMID: 34848759 PMCID: PMC8633012 DOI: 10.1038/s41598-021-02277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
It is of great interest in neuroscience to determine what frequency bands in the brain have covarying power. This would help us robustly identify the frequency signatures of neural processes. However to date, to the best of the author's knowledge, a comprehensive statistical approach to this question that accounts for intra-frequency autocorrelation, frequency-domain oversampling, and multiple testing under dependency has not been undertaken. As such, this work presents a novel statistical significance test for correlated power across frequency bands for a broad class of non-stationary time series. It is validated on synthetic data. It is then used to test all of the inter-frequency power correlations between 0.2 and 8500 Hz in continuous intracortical extracellular neural recordings in Macaque M1, using a very large, publicly available dataset. The recordings were Current Source Density referenced and were recorded with a Utah array. The results support previous results in the literature that show that neural processes in M1 have power signatures across a very broad range of frequency bands. In particular, the power in LFP frequency bands as low as 20 Hz was found to almost always be statistically significantly correlated to the power in kHz frequency ranges. It is proposed that this test can also be used to discover the superimposed frequency domain signatures of all the neural processes in a neural signal, allowing us to identify every interesting neural frequency band.
Collapse
Affiliation(s)
- Oscar W Savolainen
- Centre for Bio-Inspired Technology, Imperial College London, London, UK.
| |
Collapse
|
7
|
Inferring entire spiking activity from local field potentials. Sci Rep 2021; 11:19045. [PMID: 34561480 PMCID: PMC8463692 DOI: 10.1038/s41598-021-98021-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Extracellular recordings are typically analysed by separating them into two distinct signals: local field potentials (LFPs) and spikes. Previous studies have shown that spikes, in the form of single-unit activity (SUA) or multiunit activity (MUA), can be inferred solely from LFPs with moderately good accuracy. SUA and MUA are typically extracted via threshold-based technique which may not be reliable when the recordings exhibit a low signal-to-noise ratio (SNR). Another type of spiking activity, referred to as entire spiking activity (ESA), can be extracted by a threshold-less, fast, and automated technique and has led to better performance in several tasks. However, its relationship with the LFPs has not been investigated. In this study, we aim to address this issue by inferring ESA from LFPs intracortically recorded from the motor cortex area of three monkeys performing different tasks. Results from long-term recording sessions and across subjects revealed that ESA can be inferred from LFPs with good accuracy. On average, the inference performance of ESA was consistently and significantly higher than those of SUA and MUA. In addition, local motor potential (LMP) was found to be the most predictive feature. The overall results indicate that LFPs contain substantial information about spiking activity, particularly ESA. This could be useful for understanding LFP-spike relationship and for the development of LFP-based BMIs.
Collapse
|