1
|
Corsi MC, Sorrentino P, Schwartz D, George N, Gollo LL, Chevallier S, Hugueville L, Kahn AE, Dupont S, Bassett DS, Jirsa V, De Vico Fallani F. Measuring neuronal avalanches to inform brain-computer interfaces. iScience 2024; 27:108734. [PMID: 38226174 PMCID: PMC10788504 DOI: 10.1016/j.isci.2023.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Large-scale interactions among multiple brain regions manifest as bursts of activations called neuronal avalanches, which reconfigure according to the task at hand and, hence, might constitute natural candidates to design brain-computer interfaces (BCIs). To test this hypothesis, we used source-reconstructed magneto/electroencephalography during resting state and a motor imagery task performed within a BCI protocol. To track the probability that an avalanche would spread across any two regions, we built an avalanche transition matrix (ATM) and demonstrated that the edges whose transition probabilities significantly differed between conditions hinged selectively on premotor regions in all subjects. Furthermore, we showed that the topology of the ATMs allows task-decoding above the current gold standard. Hence, our results suggest that neuronal avalanches might capture interpretable differences between tasks that can be used to inform brain-computer interfaces.
Collapse
Affiliation(s)
- Marie-Constance Corsi
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Inria, Aramis Team, Paris, France
| | - Pierpaolo Sorrentino
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Denis Schwartz
- Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
| | - Nathalie George
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
| | - Leonardo L. Gollo
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria 3168, Australia
| | | | - Laurent Hugueville
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Ari E. Kahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Sophie Dupont
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Viktor Jirsa
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Inria, Aramis Team, Paris, France
| |
Collapse
|
2
|
Shang Y. Feature-enriched core percolation in multiplex networks. Phys Rev E 2022; 106:054314. [PMID: 36559501 DOI: 10.1103/physreve.106.054314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Percolation models have long served as a paradigm for unraveling the structure and resilience of complex systems comprising interconnected nodes. In many real networks, nodes are identified by not only their connections but nontopological metadata such as age and gender in social systems, geographical location in infrastructure networks, and component contents in biochemical networks. However, there is little known regarding how the nontopological features influence network structures under percolation processes. In this paper we introduce a feature-enriched core percolation framework using a generic multiplex network approach. We thereby analytically determine the corona cluster, size, and number of edges of the feature-enriched cores. We find a hybrid percolation transition combining a jump and a square root singularity at the critical points in both the network connectivity and the feature space. Integrating the degree-feature distribution with the Farlie-Gumbel-Morgenstern copula, we show the existence of continuous and discrete percolation transitions for feature-enriched cores at critical correlation levels. The inner and outer cores are found to undergo distinct phase transitions under the feature-enriched percolation, all limited by a characteristic curve of the feature distribution.
Collapse
Affiliation(s)
- Yilun Shang
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
3
|
Liu S. Applying antagonistic activation pattern to the single-trial classification of mental arithmetic. Heliyon 2022; 8:e11102. [PMID: 36303917 PMCID: PMC9593203 DOI: 10.1016/j.heliyon.2022.e11102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Background At present, the application of fNIRS in the field of brain-computer interface (BCI) is being a hot topic. By fNIRS-BCI, the brain realizes the control of external devices. A state-of-the-art BCI system has five steps which are cerebral cortex signal acquisition, data pre-processing, feature selection and extraction, feature classification and application interface. Proper feature selection and extraction are crucial to the final fNIRS-BCI effect. This paper proposes a feature selection and extraction method for the mental arithmetic task. Specifically, we modified the antagonistic activation pattern approach and used the combination of antagonistic activation patterns to extract features for enhancement of the classification accuracy with low calculation costs. Methods Experiments are conducted on an open-acquisition dataset including fNIRS signals of eight healthy subjects of mental arithmetic (MA) tasks and rest tasks. First, the signals are filtered using band-pass filters to remove noise. Second, channels are selected by prior knowledge about antagonistic activation patterns. We used cerebral blood volume (CBV) and cerebral oxygen exchange (COE) of selected each channel to build novel attributes. Finally, we proposed three groups of attributes which are CBV, COE and CBV + COE. Based on attributes generated by the proposed method, we calculated temporal statistical measures (average, variance, maximum, minimum and slope). Any two of five statistical measures were combined as feature sets. Main results With the LDA, QDA, and SVM classifiers, the proposed method obtained higher classification accuracies the basic control method. The maximum classification accuracies achieved by the proposed method are 67.45 ± 14.56% with LDA classifier, 89.73 ± 5.71% with QDA classifier, and 87.04 ± 6.88% with SVM classifier. The novel method reduced the running time by 3.75 times compared with the method incorporating all channels into the feature set. Therefore, the novel method reduces the computational costs while maintaining high classification accuracy. The results are validated by another open-access dataset including MA and rest tasks of 29 healthy subjects.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Corsi MC, Chevallier S, Fallani FDV, Yger F. Functional connectivity ensemble method to enhance BCI performance (FUCONE). IEEE Trans Biomed Eng 2022; 69:2826-2838. [PMID: 35226599 DOI: 10.1109/tbme.2022.3154885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Relying on the idea that functional connectivity provides important insights on the underlying dynamic of neuronal interactions, we propose a novel framework that combines functional connectivity estimators and covariance-based pipelines to improve the classification of mental states, such as motor imagery. METHODS A Riemannian classifier is trained for each estimator and an ensemble classifier combines the decisions in each feature space. A thorough assessment of the functional connectivity estimators is provided and the best performing pipeline among those tested, called FUCONE, is evaluated on different conditions and datasets. RESULTS Using a meta-analysis to aggregate results across datasets, FUCONE performed significantly better than all state-of-the-art methods. CONCLUSION The performance gain is mostly imputable to the improved diversity of the feature spaces, increasing the robustness of the ensemble classifier with respect to the inter- and intra-subject variability. SIGNIFICANCE Our results offer new insights into the need to consider functional connectivity-based methods to improve the BCI performance.
Collapse
|