1
|
Yi C, Li F, Wang J, Li Y, Zhang J, Chen W, Jiang L, Yao D, Xu P, He B, Dong W. Abnormal trial-to-trial variability in P300 time-varying directed eeg network of schizophrenia. Med Biol Eng Comput 2024; 62:3327-3341. [PMID: 38834855 DOI: 10.1007/s11517-024-03133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH "noisy" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.
Collapse
Affiliation(s)
- Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, 2019RU035, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Jiuju Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiamin Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wanjun Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, 2019RU035, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
2
|
Varga L, Moca VV, Molnár B, Perez-Cervera L, Selim MK, Díaz-Parra A, Moratal D, Péntek B, Sommer WH, Mureșan RC, Canals S, Ercsey-Ravasz M. Brain dynamics supported by a hierarchy of complex correlation patterns defining a robust functional architecture. Cell Syst 2024; 15:770-786.e5. [PMID: 39142285 DOI: 10.1016/j.cels.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/01/2023] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into cognitive processes with significant clinical potential. However, delays in brain region communication and dynamic variations are often overlooked in functional network studies. We demonstrate that networks extracted from fMRI cross-correlation matrices, considering time lags between signals, show remarkable reliability when focusing on statistical distributions of network properties. This reveals a robust brain functional connectivity pattern, featuring a sparse backbone of strong 0-lag correlations and weaker links capturing coordination at various time delays. This dynamic yet stable network architecture is consistent across rats, marmosets, and humans, as well as in electroencephalogram (EEG) data, indicating potential universality in brain dynamics. Second-order properties of the dynamic functional network reveal a remarkably stable hierarchy of functional correlations in both group-level comparisons and test-retest analyses. Validation using alcohol use disorder fMRI data uncovers broader shifts in network properties than previously reported, demonstrating the potential of this method for identifying disease biomarkers.
Collapse
Affiliation(s)
- Levente Varga
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Vasile V Moca
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Botond Molnár
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Laura Perez-Cervera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Mohamed Kotb Selim
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Antonio Díaz-Parra
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Balázs Péntek
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Wolfgang H Sommer
- Institute of Psychopharmacology and Clinic for Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Raul C Mureșan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania; STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain.
| | - Maria Ercsey-Ravasz
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Li WX, Lin QH, Zhao BH, Kuang LD, Zhang CY, Han Y, Calhoun VD. Dynamic functional network connectivity based on spatial source phase maps of complex-valued fMRI data: Application to schizophrenia. J Neurosci Methods 2024; 403:110049. [PMID: 38151187 DOI: 10.1016/j.jneumeth.2023.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Dynamic spatial functional network connectivity (dsFNC) has shown advantages in detecting functional alterations impacted by mental disorders using magnitude-only fMRI data. However, complete fMRI data are complex-valued with unique and useful phase information. METHODS We propose dsFNC of spatial source phase (SSP) maps, derived from complex-valued fMRI data (named SSP-dsFNC), to capture the dynamics elicited by the phase. We compute mutual information for connectivity quantification, employ statistical analysis and Markov chains to assess dynamics, ultimately classifying schizophrenia patients (SZs) and healthy controls (HCs) based on connectivity variance and Markov chain state transitions across windows. RESULTS SSP-dsFNC yielded greater dynamics and more significant HC-SZ differences, due to the use of complete brain information from complex-valued fMRI data. COMPARISON WITH EXISTING METHODS Compared with magnitude-dsFNC, SSP-dsFNC detected additional and meaningful connections across windows (e.g., for right frontal parietal) and achieved 14.6% higher accuracy for classifying HCs and SZs. CONCLUSIONS This work provides new evidence about how SSP-dsFNC could be impacted by schizophrenia, and this information could be used to identify potential imaging biomarkers for psychotic diagnosis.
Collapse
Affiliation(s)
- Wei-Xing Li
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qiu-Hua Lin
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Bin-Hua Zhao
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li-Dan Kuang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Chao-Ying Zhang
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Han
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Rodríguez-González V, Núñez P, Gómez C, Shigihara Y, Hoshi H, Tola-Arribas MÁ, Cano M, Guerrero Á, García-Azorín D, Hornero R, Poza J. Connectivity-based Meta-Bands: A new approach for automatic frequency band identification in connectivity analyses. Neuroimage 2023; 280:120332. [PMID: 37619796 DOI: 10.1016/j.neuroimage.2023.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse neural signals in specific frequency ranges, known as "canonical" frequency bands. However, this segmentation, is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges based on the topological similarity of the frequency-dependent functional neural network. The resting-state neural activity of 195 cognitively healthy subjects from three different databases (MEG: 123 subjects; EEG1: 27 subjects; EEG2: 45 subjects) was analysed. In a first step, MEG and EEG signals were filtered with a narrow-band filter bank (1 Hz bandwidth) from 1 to 70 Hz with a 0.5 Hz step. Next, the connectivity in each of these filtered signals was estimated using the orthogonalized version of the amplitude envelope correlation to obtain the frequency-dependent functional neural network. Finally, a community detection algorithm was used to identify communities in the frequency domain showing a similar network topology. We have called this approach the "Connectivity-based Meta-Bands" (CMB) algorithm. Additionally, two types of synthetic signals were used to configure the hyper-parameters of the CMB algorithm. We observed that the classical approaches to band segmentation are partially aligned with the underlying network topologies at group level for the MEG signals, but they are missing individual idiosyncrasies that may be biasing previous studies, as revealed by our methodology. On the other hand, the sensitivity of EEG signals to reflect this underlying frequency-dependent network structure is limited, revealing a simpler frequency parcellation, not aligned with that defined by the "canonical" frequency bands. To the best of our knowledge, this is the first study that proposes an unsupervised band segmentation method based on the topological similarity of functional neural network across frequencies. This methodology fully accounts for subject-specific patterns, providing more robust and personalized analyses, and paving the way for new studies focused on exploring the frequency-dependent structure of brain connectivity.
Collapse
Affiliation(s)
- Víctor Rodríguez-González
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain.
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain
| | | | | | - Miguel Ángel Tola-Arribas
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; Servicio de Neurología. Hospital Universitario Río Hortega, Valladolid, Spain
| | - Mónica Cano
- Servicio de Neurología. Hospital Universitario Río Hortega, Valladolid, Spain
| | - Ángel Guerrero
- Hospital Clínico Universitario, Valladolid, Spain; Department of Medicine, University of Valladolid, Spain
| | | | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| |
Collapse
|