1
|
Ferreira-Fernandes E, Laranjo M, Reis T, Canijo B, Ferreira PA, Martins P, Vilarinho J, Tavakoli M, Kunicki C, Peça J. In vivo recordings in freely behaving mice using independent silicon probes targeting multiple brain regions. Front Neural Circuits 2023; 17:1293620. [PMID: 38186631 PMCID: PMC10771849 DOI: 10.3389/fncir.2023.1293620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
In vivo recordings in freely behaving animals are crucial to understand the neuronal circuit basis of behavior. Although current multi-channel silicon probes provide unparalleled sampling density, the study of interacting neuronal populations requires the implantation of multiple probes across different regions of the brain. Ideally, these probes should be independently adjustable, to maximize the yield, and recoverable, to mitigate costs. In this work, we describe the implementation of a miniaturized 3D-printed headgear system for chronic in vivo recordings in mice using independently movable silicon probes targeting multiple brain regions. We successfully demonstrated the performance of the headgear by simultaneously recording the neuronal activity in the prelimbic cortex and dorsal hippocampus. The system proved to be sturdy, ensuring high-quality stable recordings and permitted reuse of the silicon probes, with no observable interference in mouse innate behaviors.
Collapse
Affiliation(s)
- Emanuel Ferreira-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Mariana Laranjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Tiago Reis
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Bárbara Canijo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro A. Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro Martins
- Department of Architecture, University of Coimbra, Coimbra, Portugal
| | - João Vilarinho
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Carolina Kunicki
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Coimbra, Portugal
| | - João Peça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Shin JD, Tang W, Jadhav SP. Protocol for geometric transformation of cognitive maps for generalization across hippocampal-prefrontal circuits. STAR Protoc 2023; 4:102513. [PMID: 37572325 PMCID: PMC10448425 DOI: 10.1016/j.xpro.2023.102513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
Memory generalization is the ability to abstract knowledge from prior experiences and is critical for flexible behavior in novel situations. Here, we describe a protocol for simultaneous recording of hippocampal (area CA1)-prefrontal cortical neural ensembles in Long-Evans rats during task generalization across two distinct environments. We describe steps for building and assembling experimental apparatuses, animal preparation and surgery, and performing experiments. We then detail procedures for histology, data processing, and assessing population geometry using Uniform Manifold Approximation and Projection. For complete details on the use and execution of this protocol, please refer to Tang et al. (2023).1.
Collapse
Affiliation(s)
- Justin D Shin
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Wenbo Tang
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
3
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
4
|
Guardamagna M, Stella F, Battaglia FP. Heterogeneity of network and coding states in mouse CA1 place cells. Cell Rep 2023; 42:112022. [PMID: 36709427 DOI: 10.1016/j.celrep.2023.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/29/2023] Open
Abstract
Theta sequences and phase precession shape hippocampal activity and are considered key underpinnings of memory formation. Theta sequences are sweeps of spikes from multiple cells, tracing trajectories from past to future. Phase precession is the correlation between theta firing phase and animal position. Here, we reconsider these temporal processes in CA1 and the computational principles that they are thought to obey. We find stronger heterogeneity than previously described: we identify cells that do not phase precess but reliably express theta sequences. Other cells phase precess only when medium gamma (linked to entorhinal inputs) is strongest. The same cells express more sequences, but not precession, when slow gamma (linked to CA3 inputs) dominates. Moreover, sequences occur independently in distinct cell groups. Our results challenge the view that phase precession is the mechanism underlying the emergence of theta sequences, suggesting a role for CA1 cells in multiplexing diverse computational processes.
Collapse
Affiliation(s)
- Matteo Guardamagna
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|