1
|
Guo Y, Nowakowski M, Dai W. FlexSleepTransformer: a transformer-based sleep staging model with flexible input channel configurations. Sci Rep 2024; 14:26312. [PMID: 39487223 PMCID: PMC11530688 DOI: 10.1038/s41598-024-76197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Clinical sleep diagnosis traditionally relies on polysomnography (PSG) and expert manual classification of sleep stages. Recent advancements in deep learning have shown promise in automating sleep stage classification using a single PSG channel. However, variations in PSG acquisition devices and environments mean that the number of PSG channels can differ across sleep centers. To integrate a sleep staging method into clinical practice effectively, it must accommodate a flexible number of PSG channels. In this paper, we proposed FlexSleepTransformer, a transformer-based model designed to handle varying number of input channels, making it adaptable to diverse sleep staging datasets. We evaluated FlexSleepTransformer using two distinct datasets: the public SleepEDF-78 dataset and the local SleepUHS dataset. Notably, FlexSleepTransformer is the first model capable of simultaneously training on datasets with differing number of PSG channels. Our experiments showed that FlexSleepTransformer trained on both datasets together achieved 98% of the accuracy compared to models trained on each dataset individually. Furthermore, it outperformed models trained exclusively on one dataset when tested on the other dataset. Additionally, FlexSleepTransformer surpassed state-of-the-art CNN and RNN-based models on both datasets. Due to its adaptability with varying channels numbers, FlexSleepTransformer holds significant potential for clinical adoption, especially when trained with data from a wide range of sleep centers.
Collapse
Affiliation(s)
- Yanchen Guo
- School of Computing, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Maciej Nowakowski
- Sleep Medicine, United Health Services Hospitals, Inc, Binghamton, NY, 13902, USA
| | - Weiying Dai
- School of Computing, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
| |
Collapse
|
2
|
Yu R, Zhou Z, Xu M, Gao M, Zhu M, Wu S, Gao X, Bin G. SQI-DOANet: electroencephalogram-based deep neural network for estimating signal quality index and depth of anaesthesia. J Neural Eng 2024; 21:046031. [PMID: 39029477 DOI: 10.1088/1741-2552/ad6592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. Monitoring the depth of anaesthesia (DOA) during surgery is of critical importance. However, during surgery electroencephalography (EEG) is usually subject to various disturbances that affect the accuracy of DOA. Therefore, accurately estimating noise in EEG and reliably assessing DOA remains an important challenge. In this paper, we proposed a signal quality index (SQI) network (SQINet) for assessing the EEG signal quality and a DOA network (DOANet) for analyzing EEG signals to precisely estimate DOA. The two networks are termed SQI-DOANet.Approach. The SQINet contained a shallow convolutional neural network to quickly determine the quality of the EEG signal. The DOANet comprised a feature extraction module for extracting features, a dual attention module for fusing multi-channel and multi-scale information, and a gated multilayer perceptron module for extracting temporal information. The performance of the SQI-DOANet model was validated by training and testing the model on the large VitalDB database, with the bispectral index (BIS) as the reference standard.Main results. The proposed DOANet yielded a Pearson correlation coefficient with the BIS score of 0.88 in the five-fold cross-validation, with a mean absolute error (MAE) of 4.81. The mean Pearson correlation coefficient of SQI-DOANet with the BIS score in the five-fold cross-validation was 0.82, with an MAE of 5.66.Significance. The SQI-DOANet model outperformed three compared methods. The proposed SQI-DOANet may be used as a new deep learning method for DOA estimation. The code of the SQI-DOANet will be made available publicly athttps://github.com/YuRui8879/SQI-DOANet.
Collapse
Affiliation(s)
- Rui Yu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Meng Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Meng Gao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Meitong Zhu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Shuicai Wu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guangyu Bin
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
3
|
Shao Y, Huang B, Du L, Wang P, Li Z, Liu Z, Zhou L, Song Y, Chen X, Fang Z. Reliable automatic sleep stage classification based on hybrid intelligence. Comput Biol Med 2024; 173:108314. [PMID: 38513392 DOI: 10.1016/j.compbiomed.2024.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Sleep staging is a vital aspect of sleep assessment, serving as a critical tool for evaluating the quality of sleep and identifying sleep disorders. Manual sleep staging is a laborious process, while automatic sleep staging is seldom utilized in clinical practice due to issues related to the inadequate accuracy and interpretability of classification results in automatic sleep staging models. In this work, a hybrid intelligent model is presented for automatic sleep staging, which integrates data intelligence and knowledge intelligence, to attain a balance between accuracy, interpretability, and generalizability in the sleep stage classification. Specifically, it is built on any combination of typical electroencephalography (EEG) and electrooculography (EOG) channels, including a temporal fully convolutional network based on the U-Net architecture and a multi-task feature mapping structure. The experimental results show that, compared to current interpretable automatic sleep staging models, our model achieves a Macro-F1 score of 0.804 on the ISRUC dataset and 0.780 on the Sleep-EDFx dataset. Moreover, we use knowledge intelligence to address issues of excessive jumps and unreasonable sleep stage transitions in the coarse sleep graphs obtained by the model. We also explore the different ways knowledge intelligence affects coarse sleep graphs by combining different sleep graph correction methods. Our research can offer convenient support for sleep physicians, indicating its significant potential in improving the efficiency of clinical sleep staging.
Collapse
Affiliation(s)
- Yizi Shao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Bokai Huang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Lidong Du
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Peng Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhenfeng Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhe Liu
- Hunan VentMed Medical Technology Co., Ltd, Shaoyang, China.
| | - Lei Zhou
- Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuanlin Song
- Zhongshan Hospital Fudan University, Shanghai, China.
| | - Xianxiang Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhen Fang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Phan H, Lorenzen KP, Heremans E, Chen OY, Tran MC, Koch P, Mertins A, Baumert M, Mikkelsen KB, De Vos M. L-SeqSleepNet: Whole-cycle Long Sequence Modeling for Automatic Sleep Staging. IEEE J Biomed Health Inform 2023; 27:4748-4757. [PMID: 37552591 DOI: 10.1109/jbhi.2023.3303197] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human sleep is cyclical with a period of approximately 90 minutes, implying long temporal dependency in the sleep data. Yet, exploring this long-term dependency when developing sleep staging models has remained untouched. In this work, we show that while encoding the logic of a whole sleep cycle is crucial to improve sleep staging performance, the sequential modelling approach in existing state-of-the-art deep learning models are inefficient for that purpose. We thus introduce a method for efficient long sequence modelling and propose a new deep learning model, L-SeqSleepNet, which takes into account whole-cycle sleep information for sleep staging. Evaluating L-SeqSleepNet on four distinct databases of various sizes, we demonstrate state-of-the-art performance obtained by the model over three different EEG setups, including scalp EEG in conventional Polysomnography (PSG), in-ear EEG, and around-the-ear EEG (cEEGrid), even with a single EEG channel input. Our analyses also show that L-SeqSleepNet is able to alleviate the predominance of N2 sleep (the major class in terms of classification) to bring down errors in other sleep stages. Moreover the network becomes much more robust, meaning that for all subjects where the baseline method had exceptionally poor performance, their performance are improved significantly. Finally, the computation time only grows at a sub-linear rate when the sequence length increases.
Collapse
|
5
|
Gaiduk M, Serrano Alarcón Á, Seepold R, Martínez Madrid N. Current status and prospects of automatic sleep stages scoring: Review. Biomed Eng Lett 2023; 13:247-272. [PMID: 37519865 PMCID: PMC10382458 DOI: 10.1007/s13534-023-00299-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 08/01/2023] Open
Abstract
The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable human and financial resources, and incorporates some subjectivity, an automated approach could result in several advantages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article. To achieve it, we examined articles published between 2018 and 2022 that dealt with the automated scoring of sleep stages. In the final selection for in-depth analysis, 125 articles were included after reviewing a total of 515 publications. The results revealed that automatic scoring demonstrates good quality (with Cohen's kappa up to over 0.80 and accuracy up to over 90%) in analysing EEG/EEG + EOG + EMG signals. At the same time, it should be noted that there has been no breakthrough in the quality of results using these signals in recent years. Systems involving other signals that could potentially be acquired more conveniently for the user (e.g. respiratory, cardiac or movement signals) remain more challenging in the implementation with a high level of reliability but have considerable innovation capability. In general, automatic sleep stage scoring has excellent potential to assist medical professionals while providing an objective assessment.
Collapse
Affiliation(s)
- Maksym Gaiduk
- HTWG Konstanz – University of Applied Sciences, Alfred-Wachtel-Str.8, 78462 Konstanz, Germany
| | | | - Ralf Seepold
- HTWG Konstanz – University of Applied Sciences, Alfred-Wachtel-Str.8, 78462 Konstanz, Germany
| | | |
Collapse
|