1
|
Hoshi H, Hirata Y, Kobayashi M, Sakamoto Y, Fukasawa K, Ichikawa S, Poza J, Rodríguez-González V, Gómez C, Shigihara Y. Distinctive effects of executive dysfunction and loss of learning/memory abilities on resting-state brain activity. Sci Rep 2022; 12:3459. [PMID: 35236888 PMCID: PMC8891272 DOI: 10.1038/s41598-022-07202-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/11/2022] [Indexed: 01/08/2023] Open
Abstract
Dementia is a syndrome characterised by cognitive impairments, with a loss of learning/memory abilities at the earlier stages and executive dysfunction at the later stages. However, recent studies have suggested that impairments in both learning/memory abilities and executive functioning might co-exist. Cognitive impairments have been primarily evaluated using neuropsychological assessments, such as the Mini-Mental State Examination (MMSE). Recently, neuroimaging techniques such as magnetoencephalography (MEG), which assess changes in resting-state brain activity, have also been used as biomarkers for cognitive impairment. However, it is unclear whether these changes reflect dysfunction in executive function as well as learning and memory. In this study, parameters from the MEG for brain activity, MMSE for learning/memory, and Frontal Assessment Battery (FAB) for executive function were compared within 207 individuals. Three MEG parameters were used as representatives of resting-state brain activity: median frequency, individual alpha frequency, and Shannon’s spectral entropy. Regression analysis showed that median frequency was predicted by both the MMSE and FAB scores, while individual alpha frequency and Shannon’s spectral entropy were predicted by MMSE and FAB scores, respectively. Our results indicate that MEG spectral parameters reflect both learning/memory and executive functions, supporting the utility of MEG as a biomarker of cognitive impairment.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Kisen-7-5 Inadacho, Obihiro, Hokkaido, 080-0833, Japan
| | - Yoko Hirata
- Department of Neurosurgery, Kumagaya General Hospital, Kumagaya, 360‑8567, Japan
| | - Momoko Kobayashi
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, 360‑8567, Japan
| | - Yuki Sakamoto
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, 360‑8567, Japan
| | - Keisuke Fukasawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, 360‑8567, Japan
| | - Sayuri Ichikawa
- Clinical Laboratory, Kumagaya General Hospital, Kumagaya, 360‑8567, Japan
| | - Jesús Poza
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, 47011, Valladolid, Castilla y León, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales Y Nanomedicina, (CIBER-BBN), 47011, Valladolid, Castilla y León, Spain.,Instituto de Investigación en Matemáticas (IMUVA), University of Valladolid, 47011, Valladolid, Castilla y León, Spain
| | - Víctor Rodríguez-González
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, 47011, Valladolid, Castilla y León, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales Y Nanomedicina, (CIBER-BBN), 47011, Valladolid, Castilla y León, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, 47011, Valladolid, Castilla y León, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales Y Nanomedicina, (CIBER-BBN), 47011, Valladolid, Castilla y León, Spain
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Kisen-7-5 Inadacho, Obihiro, Hokkaido, 080-0833, Japan. .,Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, 360‑8567, Japan.
| |
Collapse
|
2
|
Lei L, Liu K, Yang Y, Doubliez A, Hu X, Xu Y, Zhou Y. Spatio-temporal analysis of EEG features during consciousness recovery in patients with disorders of consciousness. Clin Neurophysiol 2021; 133:135-144. [PMID: 34864400 DOI: 10.1016/j.clinph.2021.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE As consciousness recovery is not only dynamic but also involves interactions between various brain regions, elucidating the mechanism of recovery requires tracking cortical activity in spatio-temporal dimensions. METHODS We tracked the cortical activities of 40 patients (mean age: 54.38 years; 28 males; 21 patients with minimally conscious states) with disorders of consciousness, and collected a total of 156 electroencephalographic signals. We investigated the longitudinal changes in EEG nonlinear dynamic features (i.e., approximate entropy, sample entropy, and Lempel-Ziv complexity) and relative wavelet energy along with consciousness recovery. RESULTS Global EEG features showed a non-monotonic trend during consciousness recovery (P < 0.05). When the level of consciousness of patients was transferred to a minimally conscious state from an unresponsive wakefulness syndrome/ vegetative state, an inflection point appeared in the EEG features. The EEG feature change trends between the injured and uninjured areas were dissimilar (P < 0.05). Importantly, the degree of dissimilarity increased non-monotonically across the levels of consciousness (P < 0.05). CONCLUSIONS EEG recovery was non-monotonic and dissimilar in spatio-temporal dimensions, with an inflection point. SIGNIFICANCE These findings further clarify the process of consciousness recovery and provide assistance in exploring the mechanism of consciousness recovery.
Collapse
Affiliation(s)
- Ling Lei
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Kehong Liu
- Wu Jing Hospital, Rehabilitation Center, Hangzhou, Zhejiang 310051, China
| | - Yong Yang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China.
| | - Alice Doubliez
- Paris Descartes University, 45 rue des Saints-Peres, Paris 75006, France
| | - Xiaohua Hu
- Wu Jing Hospital, Rehabilitation Center, Hangzhou, Zhejiang 310051, China
| | - Ying Xu
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Yixing Zhou
- First People's Hospital of Zhaoqing City, No. 9 Donggang East Road, Duanzhou District, Zhaoqing 526060, China.
| |
Collapse
|
3
|
Yang S, Bornot JMS, Fernandez RB, Deravi F, Hoque S, Wong-Lin K, Prasad G. Detection of Mild Cognitive Impairment with MEG Functional Connectivity Using Wavelet-Based Neuromarkers. SENSORS (BASEL, SWITZERLAND) 2021; 21:6210. [PMID: 34577423 PMCID: PMC8473237 DOI: 10.3390/s21186210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Studies on developing effective neuromarkers based on magnetoencephalographic (MEG) signals have been drawing increasing attention in the neuroscience community. This study explores the idea of using source-based magnitude-squared spectral coherence as a spatial indicator for effective regions of interest (ROIs) localization, subsequently discriminating the participants with mild cognitive impairment (MCI) from a group of age-matched healthy control (HC) elderly participants. We found that the cortical regions could be divided into two distinctive groups based on their coherence indices. Compared to HC, some ROIs showed increased connectivity (hyper-connected ROIs) for MCI participants, whereas the remaining ROIs demonstrated reduced connectivity (hypo-connected ROIs). Based on these findings, a series of wavelet-based source-level neuromarkers for MCI detection are proposed and explored, with respect to the two distinctive ROI groups. It was found that the neuromarkers extracted from the hyper-connected ROIs performed significantly better for MCI detection than those from the hypo-connected ROIs. The neuromarkers were classified using support vector machine (SVM) and k-NN classifiers and evaluated through Monte Carlo cross-validation. An average recognition rate of 93.83% was obtained using source-reconstructed signals from the hyper-connected ROI group. To better conform to clinical practice settings, a leave-one-out cross-validation (LOOCV) approach was also employed to ensure that the data for testing was from a participant that the classifier has never seen. Using LOOCV, we found the best average classification accuracy was reduced to 83.80% using the same set of neuromarkers obtained from the ROI group with functional hyper-connections. This performance surpassed the results reported using wavelet-based features by approximately 15%. Overall, our work suggests that (1) certain ROIs are particularly effective for MCI detection, especially when multi-resolution wavelet biomarkers are employed for such diagnosis; (2) there exists a significant performance difference in system evaluation between research-based experimental design and clinically accepted evaluation standards.
Collapse
Affiliation(s)
- Su Yang
- Department of Computer Science, Swansea University, Swansea SA1 8EN, UK
| | - Jose Miguel Sanchez Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, Ireland; (J.M.S.B.); (K.W.-L.); (G.P.)
| | | | - Farzin Deravi
- School of Engineering, University of Kent, Canterbury CT2 7NZ, UK; (F.D.); (S.H.)
| | - Sanaul Hoque
- School of Engineering, University of Kent, Canterbury CT2 7NZ, UK; (F.D.); (S.H.)
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, Ireland; (J.M.S.B.); (K.W.-L.); (G.P.)
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, Ireland; (J.M.S.B.); (K.W.-L.); (G.P.)
| |
Collapse
|
4
|
Trinh TT, Tsai CF, Hsiao YT, Lee CY, Wu CT, Liu YH. Identifying Individuals With Mild Cognitive Impairment Using Working Memory-Induced Intra-Subject Variability of Resting-State EEGs. Front Comput Neurosci 2021; 15:700467. [PMID: 34421565 PMCID: PMC8373435 DOI: 10.3389/fncom.2021.700467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
Individuals with mild cognitive impairment (MCI) are at high risk of developing into dementia (e. g., Alzheimer's disease, AD). A reliable and effective approach for early detection of MCI has become a critical challenge. Although compared with other costly or risky lab tests, electroencephalogram (EEG) seems to be an ideal alternative measure for early detection of MCI, searching for valid EEG features for classification between healthy controls (HCs) and individuals with MCI remains to be largely unexplored. Here, we design a novel feature extraction framework and propose that the spectral-power-based task-induced intra-subject variability extracted by this framework can be an encouraging candidate EEG feature for the early detection of MCI. In this framework, we extracted the task-induced intra-subject spectral power variability of resting-state EEGs (as measured by a between-run similarity) before and after participants performing cognitively exhausted working memory tasks as the candidate feature. The results from 74 participants (23 individuals with AD, 24 individuals with MCI, 27 HC) showed that the between-run similarity over the frontal and central scalp regions in the HC group is higher than that in the AD or MCI group. Furthermore, using a feature selection scheme and a support vector machine (SVM) classifier, the between-run similarity showed encouraging leave-one-participant-out cross-validation (LOPO-CV) classification performance for the classification between the MCI and HC (80.39%) groups and between the AD vs. HC groups (78%), and its classification performance is superior to other widely-used features such as spectral powers, coherence, and the complexity estimated by Katz's method extracted from single-run resting-state EEGs (a common approach in previous studies). The results based on LOPO-CV, therefore, suggest that the spectral-power-based task-induced intra-subject EEG variability extracted by the proposed feature extraction framework has the potential to serve as a neurophysiological feature for the early detection of MCI in individuals.
Collapse
Affiliation(s)
- Thanh-Tung Trinh
- Neural Engineering and Smart Systems Laboratory, Graduate Institute of Manufacturing Technology, College of Mechanical and Electrical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chia-Fen Tsai
- Department of Psychiatry, Division of Geriatric Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Hsiao
- Neural Engineering and Smart Systems Laboratory, Graduate Institute of Mechatronic Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chun-Ying Lee
- Department of Mechanical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chien-Te Wu
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Yi-Hung Liu
- Department of Mechanical Engineering, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| |
Collapse
|
5
|
Yoo SH, Woo SW, Shin MJ, Yoon JA, Shin YI, Hong KS. Diagnosis of Mild Cognitive Impairment Using Cognitive Tasks: A Functional Near-Infrared Spectroscopy Study. Curr Alzheimer Res 2021; 17:1145-1160. [PMID: 33583382 DOI: 10.2174/1567205018666210212154941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/18/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Early diagnosis of Alzheimer's disease (AD) is essential in preventing its progression to dementia. Mild cognitive impairment (MCI) can be indicative of early-stage AD. In this study, we propose a channel-wise feature extraction method of functional near-infrared spectroscopy (fNIRS) data to diagnose MCI when performing cognitive tasks, including two-back, Stroop, and semantic verbal fluency tasks (SVFT). METHODS A new channel-wise feature extraction method is proposed as follows: A region-of-interest (ROI) channel is defined as such channel having a statistical difference (p < 0.05) in t-values between two groups. For each ROI channel, features (the mean, slope, skewness, kurtosis, and peak value of oxy- and deoxy-hemoglobin) are extracted. The extracted features for the two classes (MCI, HC) are classified using the linear discriminant analysis (LDA) and support vector machine (SVM). Finally, the classifiers are validated using the area under curve (AUC) of the receiver operating characteristics. Furthermore, the suggested feature extraction method is compared with the conventional approach. Fifteen MCI patients and fifteen healthy controls (HCs) participated in the study. RESULTS In the two-back and Stroop tasks, HCs showed activation in the ventrolateral prefrontal cortex (VLPFC). However, in the case of MCI, the VLPFC was not activated. Instead, Ch. 30 was activated. In the SVFT task, the PFC was activated in both groups, but the t-values of HCs were higher than those of MCI. For the SVFT, the classification accuracies using the proposed feature extraction method were 80.77% (LDA) and 83.33% (SVM), showing the highest among the three tasks; for the Stroop task, 79.49% (LDA) and 73.08% (SVM); and for the two-back task, 73.08% (LDA) and 69.23% (SVM). CONCLUSION The cognitive disparities between the MCI and HC groups were detected in the ventrolateral prefrontal cortex using fNIRS. The proposed feature extraction method has shown an improvement in the classification accuracies, see Subsection 3.3. Most of all, the suggested method contains a groupdistinction information per cognitive task. The obtained results successfully discriminated MCI patients from HCs, which reflects that the proposed method is an efficient tool to extract features in fNIRS signals.
Collapse
Affiliation(s)
- So-Hyeon Yoo
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Seong-Woo Woo
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Myung-Jun Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Korea
| | - Jin A Yoon
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
6
|
Luo FF, Wang JB, Yuan LX, Zhou ZW, Xu H, Ma SH, Zang YF, Zhang M. Higher Sensitivity and Reproducibility of Wavelet-Based Amplitude of Resting-State fMRI. Front Neurosci 2020; 14:224. [PMID: 32300288 PMCID: PMC7145399 DOI: 10.3389/fnins.2020.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/02/2020] [Indexed: 01/26/2023] Open
Abstract
The fast Fourier transform (FFT) is a widely used algorithm used to depict the amplitude of low-frequency fluctuation (ALFF) of resting-state functional magnetic resonance imaging (RS-fMRI). Wavelet transform (WT) is more effective in representing the complex waveform due to its adaptivity to non-stationary or local features of data and many varieties of wavelet functions with different shapes being available. However, there is a paucity of RS-fMRI studies that systematically compare between the results of FFT versus WT. The present study employed five cohorts of datasets and compared the sensitivity and reproducibility of FFT-ALFF with those of Wavelet-ALFF based on five mother wavelets (namely, db2, bior4.4, morl, meyr, and sym3). In addition to the conventional frequency band of 0.0117-0.0781 Hz, a comparison was performed in sub-bands, namely, Slow-6 (0-0.0117 Hz), Slow-5 (0.0117-0.0273 Hz), Slow-4 (0.0273-0.0742 Hz), Slow-3 (0.0742-0.1992 Hz), and Slow-2 (0.1992-0.25 Hz). The results indicated that the Wavelet-ALFF of all five mother wavelets was generally more sensitive and reproducible than FFT-ALFF in all frequency bands. Specifically, in the higher frequency band Slow-2 (0.1992-0.25 Hz), the mean sensitivity of db2-ALFF results was 1.54 times that of FFT-ALFF, and the reproducibility of db2-ALFF results was 2.95 times that of FFT-ALFF. The findings suggest that wavelet-ALFF can replace FFT-ALFF, especially in the higher frequency band. Future studies should test more mother wavelets on other RS-fMRI metrics and multiple datasets.
Collapse
Affiliation(s)
- Fei-Fei Luo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jian-Bao Wang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Li-Xia Yuan
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Zhi-Wei Zhou
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Hui Xu
- Department of Medical Imaging, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shao-Hui Ma
- Department of Medical Imaging, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Núñez P, Poza J, Gómez C, Barroso-García V, Maturana-Candelas A, Tola-Arribas MA, Cano M, Hornero R. Characterization of the dynamic behavior of neural activity in Alzheimer's disease: exploring the non-stationarity and recurrence structure of EEG resting-state activity. J Neural Eng 2020; 17:016071. [PMID: 32000144 DOI: 10.1088/1741-2552/ab71e9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) have been shown to induce perturbations to normal neuronal behavior and disrupt neuronal networks. Recent work suggests that the dynamic properties of resting-state neuronal activity could be affected by MCI and AD-induced neurodegeneration. The aim of the study was to characterize these properties from different perspectives: (i) using the Kullback-Leibler divergence (KLD), a measure of non-stationarity derived from the continuous wavelet transform; and (ii) using the entropy of the recurrence point density ([Formula: see text]) and the median of the recurrence point density ([Formula: see text]), two novel metrics based on recurrence quantification analysis. APPROACH KLD, [Formula: see text] and [Formula: see text] were computed for 49 patients with dementia due to AD, 66 patients with MCI due to AD and 43 cognitively healthy controls from 60 s electroencephalographic (EEG) recordings with a 10 s sliding window with no overlap. Afterwards, we tested whether the measures reflected alterations to normal neuronal activity induced by MCI and AD. MAIN RESULTS Our results showed that frequency-dependent alterations to normal dynamic behavior can be found in patients with MCI and AD, both in non-stationarity and recurrence structure. Patients with MCI showed signs of patterns of abnormal state recurrence in the theta (4-8 Hz) and beta (13-30 Hz) frequency bands that became more marked in AD. Moreover, abnormal non-stationarity patterns were found in MCI patients, but not in patients with AD in delta (1-4 Hz), alpha (8-13 Hz), and gamma (30-70 Hz). SIGNIFICANCE The alterations in normal levels of non-stationarity in patients with MCI suggest an initial increase in cortical activity during the development of AD. This increase could possibly be due to an impairment in neuronal inhibition that is not present during later stages. MCI and AD induce alterations to the recurrence structure of cortical activity, suggesting that normal state switching during rest may be affected by these pathologies.
Collapse
Affiliation(s)
- Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina CIBER-BBN, Valladolid, Spain. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ruiz-Gómez SJ, Hornero R, Poza J, Maturana-Candelas A, Pinto N, Gómez C. Computational modeling of the effects of EEG volume conduction on functional connectivity metrics. Application to Alzheimer’s disease continuum. J Neural Eng 2019; 16:066019. [DOI: 10.1088/1741-2552/ab4024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
López-Sanz D, Bruña R, de Frutos-Lucas J, Maestú F. Magnetoencephalography applied to the study of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:25-61. [PMID: 31481165 DOI: 10.1016/bs.pmbts.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetoencephalography (MEG) is a relatively modern neuroimaging technique able to study normal and pathological brain functioning with temporal resolution in the order of milliseconds and adequate spatial resolution. Although its clinical applications are still relatively limited, great advances have been made in recent years in the field of dementia and Alzheimer's disease (AD) in particular. In this chapter, we briefly describe the physiological phenomena underlying MEG brain signals and the different metrics that can be computed from these data in order to study the alterations disrupting brain activity not only in demented patients, but also in the preclinical and prodromal stages of the disease. Changes in non-linear brain dynamics, power spectral properties, functional connectivity and network topological changes observed in AD are narratively summarized in the context of the pathophysiology of the disease. Furthermore, the potential of MEG as a potential biomarker to identify AD pathology before dementia onset is discussed in the light of current knowledge and the relationship between potential MEG biomarkers and current established hallmarks of the disease is also reviewed. To this aim, findings from different approaches such as resting state or during the performance of different cognitive paradigms are discussed.Lastly, there is an increasing interest in current scientific literature in promoting interventions aimed at modifying certain lifestyles, such as nutrition or physical activity among others, thought to reduce or delay AD risk. We discuss the utility of MEG as a potential marker of the success of such interventions from the available literature.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Biological and Health Psychology Department, Universidad Autonoma de Madrid, Madrid, Spain; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
10
|
Ruiz-Gómez SJ, Gómez C, Poza J, Martínez-Zarzuela M, Tola-Arribas MA, Cano M, Hornero R. Measuring Alterations of Spontaneous EEG Neural Coupling in Alzheimer's Disease and Mild Cognitive Impairment by Means of Cross-Entropy Metrics. Front Neuroinform 2018; 12:76. [PMID: 30459586 PMCID: PMC6232874 DOI: 10.3389/fninf.2018.00076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's Disease (AD) represents the most prevalent form of dementia and is considered a major health problem due to its high prevalence and its economic costs. An accurate characterization of the underlying neural dynamics in AD is crucial in order to adopt effective treatments. In this regard, mild cognitive impairment (MCI) is an important clinical entity, since it is a risk-state for developing dementia. In the present study, coupling patterns of 111 resting-state electroencephalography (EEG) recordings were analyzed. Specifically, we computed Cross-Approximate Entropy (Cross-ApEn) and Cross-Sample Entropy (Cross-SampEn) of 37 patients with dementia due to AD, 37 subjects with MCI, and 37 healthy control (HC) subjects. Our results showed that Cross-SampEn outperformed Cross-ApEn, revealing higher number of significant connections among the three groups (Kruskal-Wallis test, FDR-corrected p-values < 0.05). AD patients exhibited statistically significant lower similarity values at θ and β1 frequency bands compared to HC. MCI is also characterized by a global decrease of similarity in all bands, being only significant at β1. These differences shows that β band might play a significant role in the identification of early stages of AD. Our results suggest that Cross-SampEn could increase the insight into brain dynamics at different AD stages. Consequently, it may contribute to develop early AD biomarkers, potentially useful as diagnostic information.
Collapse
Affiliation(s)
- Saúl J. Ruiz-Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
- INCYL, Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
| | | | | | - Mónica Cano
- Department of Clinical Neurophysiology, Río Hortega University Hospital, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
- INCYL, Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
| |
Collapse
|
11
|
Mandal PK, Banerjee A, Tripathi M, Sharma A. A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in Healthy Aging and Alzheimer's Disease (AD). Front Comput Neurosci 2018; 12:60. [PMID: 30190674 PMCID: PMC6115612 DOI: 10.3389/fncom.2018.00060] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Neural oscillations were established with their association with neurophysiological activities and the altered rhythmic patterns are believed to be linked directly to the progression of cognitive decline. Magnetoencephalography (MEG) is a non-invasive technique to record such neuronal activity due to excellent temporal and fair amount of spatial resolution. Single channel, connectivity as well as brain network analysis using MEG data in resting state and task-based experiments were analyzed from existing literature. Single channel analysis studies reported a less complex, more regular and predictable oscillations in Alzheimer's disease (AD) primarily in the left parietal, temporal and occipital regions. Investigations on both functional connectivity (FC) and effective (EC) connectivity analysis demonstrated a loss of connectivity in AD compared to healthy control (HC) subjects found in higher frequency bands. It has been reported from multiplex network of MEG study in AD in the affected regions of hippocampus, posterior default mode network (DMN) and occipital areas, however, conclusions cannot be drawn due to limited availability of clinical literature. Potential utilization of high spatial resolution in MEG likely to provide information related to in-depth brain functioning and underlying factors responsible for changes in neuronal waves in AD. This review is a comprehensive report to investigate diagnostic biomarkers for AD may be identified by from MEG data. It is also important to note that MEG data can also be utilized for the same pursuit in combination with other imaging modalities.
Collapse
Affiliation(s)
- Pravat K. Mandal
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon, India
- Department of Neurodegeneration, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Anwesha Banerjee
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon, India
| | - Manjari Tripathi
- Department of Neurology, All Indian Institute of Medical Sciences, New Delhi, India
| | - Ankita Sharma
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
12
|
López-Sanz D, Serrano N, Maestú F. The Role of Magnetoencephalography in the Early Stages of Alzheimer's Disease. Front Neurosci 2018; 12:572. [PMID: 30158852 PMCID: PMC6104188 DOI: 10.3389/fnins.2018.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
The ever increasing proportion of aged people in modern societies is leading to a substantial increase in the number of people affected by dementia, and Alzheimer’s Disease (AD) in particular, which is the most common cause for dementia. Throughout the course of the last decades several different compounds have been tested to stop or slow disease progression with limited success, which is giving rise to a strong interest toward the early stages of the disease. Alzheimer’s disease has an extended an insidious preclinical stage in which brain pathology accumulates slowly until clinical symptoms are observable in prodromal stages and in dementia. For this reason, the scientific community is focusing into investigating early signs of AD which could lead to the development of validated biomarkers. While some CSF and PET biomarkers have already been introduced in the clinical practice, the use of non-invasive measures of brain function as early biomarkers is still under investigation. However, the electrophysiological mechanisms and the early functional alterations underlying preclinical Alzheimer’s Disease is still scarcely studied. This work aims to briefly review the most relevant findings in the field of electrophysiological brain changes as measured by magnetoencephalography (MEG). MEG has proven its utility in some clinical areas. However, although its clinical relevance in dementia is still limited, a growing number of studies highlighted its sensitivity in these preclinical stages. Studies focusing on different analytical approaches will be reviewed. Furthermore, their potential applications to establish early diagnosis and determine subsequent progression to dementia are discussed.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Noelia Serrano
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| |
Collapse
|
13
|
García M, Poza J, Santamarta D, Romero-Oraá R, Hornero R. Continuous wavelet transform in the study of the time-scale properties of intracranial pressure in hydrocephalus. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0251. [PMID: 29986920 PMCID: PMC6048580 DOI: 10.1098/rsta.2017.0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2018] [Indexed: 06/01/2023]
Abstract
Normal pressure hydrocephalus (NPH) encompasses a heterogeneous group of disorders generally characterized by clinical symptoms, ventriculomegaly and anomalous cerebrospinal fluid (CSF) dynamics. Lumbar infusion tests (ITs) are frequently performed in the preoperatory evaluation of patients who show NPH features. The analysis of intracranial pressure (ICP) signals recorded during ITs could be useful to better understand the pathophysiology underlying NPH and to assist treatment decisions. In this study, 131 ICP signals recorded during ITs were analysed using two continuous wavelet transform (CWT)-derived parameters: Jensen divergence (JD) and spectral flux (SF). These parameters were studied in two frequency bands, associated with different components of the signal: B1(0.15-0.3 Hz), related to respiratory blood pressure oscillations; and B2 (0.67-2.5 Hz), related to ICP pulse waves. Statistically significant differences (p < 1.70 × 10-3, Bonferroni-corrected Wilcoxon signed-rank tests) in pairwise comparisons between phases of ITs were found using the mean and standard deviation of JD and SF. These differences were mainly found in B2, where a lower irregularity and variability, together with less prominent time-frequency fluctuations, were found in the hypertension phase of ITs. Our results suggest that wavelet analysis could be useful for understanding CSF dynamics in NPH.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
Collapse
Affiliation(s)
- María García
- Biomedical Engineering Group (GIB), Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group (GIB), Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
- IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain
- INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - David Santamarta
- Servicio de Neurocirugía, Complejo Asistencial Universitario de León, León, Spain
| | - Roberto Romero-Oraá
- Biomedical Engineering Group (GIB), Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group (GIB), Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
- IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain
- INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer's Disease and Mild Cognitive Impairment. ENTROPY 2018; 20:e20010035. [PMID: 33265122 PMCID: PMC7512207 DOI: 10.3390/e20010035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/24/2022]
Abstract
The discrimination of early Alzheimer’s disease (AD) and its prodromal form (i.e., mild cognitive impairment, MCI) from cognitively healthy control (HC) subjects is crucial since the treatment is more effective in the first stages of the dementia. The aim of our study is to evaluate the usefulness of a methodology based on electroencephalography (EEG) to detect AD and MCI. EEG rhythms were recorded from 37 AD patients, 37 MCI subjects and 37 HC subjects. Artifact-free trials were analyzed by means of several spectral and nonlinear features: relative power in the conventional frequency bands, median frequency, individual alpha frequency, spectral entropy, Lempel–Ziv complexity, central tendency measure, sample entropy, fuzzy entropy, and auto-mutual information. Relevance and redundancy analyses were also conducted through the fast correlation-based filter (FCBF) to derive an optimal set of them. The selected features were used to train three different models aimed at classifying the trials: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and multi-layer perceptron artificial neural network (MLP). Afterwards, each subject was automatically allocated in a particular group by applying a trial-based majority vote procedure. After feature extraction, the FCBF method selected the optimal set of features: individual alpha frequency, relative power at delta frequency band, and sample entropy. Using the aforementioned set of features, MLP showed the highest diagnostic performance in determining whether a subject is not healthy (sensitivity of 82.35% and positive predictive value of 84.85% for HC vs. all classification task) and whether a subject does not suffer from AD (specificity of 79.41% and negative predictive value of 84.38% for AD vs. all comparison). Our findings suggest that our methodology can help physicians to discriminate AD, MCI and HC.
Collapse
|
15
|
Urigüen JA, García-Zapirain B, Artieda J, Iriarte J, Valencia M. Comparison of background EEG activity of different groups of patients with idiopathic epilepsy using Shannon spectral entropy and cluster-based permutation statistical testing. PLoS One 2017; 12:e0184044. [PMID: 28922360 PMCID: PMC5602520 DOI: 10.1371/journal.pone.0184044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/18/2017] [Indexed: 11/29/2022] Open
Abstract
Idiopathic epilepsy is characterized by generalized seizures with no apparent cause. One of its main problems is the lack of biomarkers to monitor the evolution of patients. The only tools they can use are limited to inspecting the amount of seizures during previous periods of time and assessing the existence of interictal discharges. As a result, there is a need for improving the tools to assist the diagnosis and follow up of these patients. The goal of the present study is to compare and find a way to differentiate between two groups of patients suffering from idiopathic epilepsy, one group that could be followed-up by means of specific electroencephalographic (EEG) signatures (intercritical activity present), and another one that could not due to the absence of these markers. To do that, we analyzed the background EEG activity of each in the absence of seizures and epileptic intercritical activity. We used the Shannon spectral entropy (SSE) as a metric to discriminate between the two groups and performed permutation-based statistical tests to detect the set of frequencies that show significant differences. By constraining the spectral entropy estimation to the [6.25–12.89) Hz range, we detect statistical differences (at below 0.05 alpha-level) between both types of epileptic patients at all available recording channels. Interestingly, entropy values follow a trend that is inversely related to the elapsed time from the last seizure. Indeed, this trend shows asymptotical convergence to the SSE values measured in a group of healthy subjects, which present SSE values lower than any of the two groups of patients. All these results suggest that the SSE, measured in a specific range of frequencies, could serve to follow up the evolution of patients suffering from idiopathic epilepsy. Future studies remain to be conducted in order to assess the predictive value of this approach for the anticipation of seizures.
Collapse
Affiliation(s)
| | | | - Julio Artieda
- Clínica Universidad de Navarra (CUN), Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jorge Iriarte
- Clínica Universidad de Navarra (CUN), Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miguel Valencia
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- * E-mail:
| |
Collapse
|
16
|
Engels MMA, van der Flier WM, Stam CJ, Hillebrand A, Scheltens P, van Straaten ECW. Alzheimer's disease: The state of the art in resting-state magnetoencephalography. Clin Neurophysiol 2017. [PMID: 28622527 DOI: 10.1016/j.clinph.2017.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is accompanied by functional brain changes that can be detected in imaging studies, including electromagnetic activity recorded with magnetoencephalography (MEG). Here, we systematically review the studies that have examined resting-state MEG changes in AD and identify areas that lack scientific or clinical progress. Three levels of MEG analysis will be covered: (i) single-channel signal analysis, (ii) pairwise analyses over time series, which includes the study of interdependencies between two time series and (iii) global network analyses. We discuss the findings in the light of other functional modalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Overall, single-channel MEG results show consistent changes in AD that are in line with EEG studies, but the full potential of the high spatial resolution of MEG and advanced functional connectivity and network analysis has yet to be fully exploited. Adding these features to the current knowledge will potentially aid in uncovering organizational patterns of brain function in AD and thereby aid the understanding of neuronal mechanisms leading to cognitive deficits.
Collapse
Affiliation(s)
- M M A Engels
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - W M van der Flier
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Ph Scheltens
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - E C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
García M, Poza J, Bachiller A, Santamarta D, Hornero R. Effect of infusion tests on the dynamical properties of intracranial pressure in hydrocephalus. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 134:225-235. [PMID: 27480746 DOI: 10.1016/j.cmpb.2016.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/09/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Hydrocephalus comprises a number of conditions characterised by clinical symptoms, dilated ventricles and anomalous cerebrospinal fluid (CSF) dynamics. Infusion tests (ITs) are usually performed to study CSF circulation and in the preoperatory evaluation of patients with hydrocephalus. The study of intracranial pressure (ICP) signals recorded during ITs could be useful to gain insight into the underlying pathophysiology of this condition and to further support treatment decisions. In this study, two wavelet parameters, wavelet turbulence (WT) and wavelet entropy (WE), were analysed in order to characterise the variability, irregularity and similarity in spectral content of ICP signals in hydrocephalus. METHODS One hundred and twelve ICP signals were analysed using WT and WE. These parameters were calculated in two frequency bands: B1 (0.15-0.3 Hz) and B2 (0.67-2.5 Hz). Each signal was divided into four artefact-free epochs corresponding to the basal, early infusion, plateau and recovery phases of the IT. We calculated the mean and standard deviation of WT and WE and analysed whether these parameters revealed differences between epochs of the IT. RESULTS Statistically significant differences (p < 1.70⋅10(-3), Bonferroni-corrected Wilcoxon signed-rank tests) in pairwise comparisons between phases of ITs were found using the mean and standard deviation of WT and WE. These differences were mainly found in B2. CONCLUSIONS Wavelet parameters like WT and WE revealed changes in the signal time-scale representation during ITs. Statistically significant differences were mainly found in B2, associated with ICP pulse waves, and included a higher degree of similarity in the spectral content, together with a lower irregularity and variability in the plateau phase with respect to the basal phase.
Collapse
Affiliation(s)
- María García
- Biomedical Engineering Group, Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain.
| | - Jesús Poza
- Biomedical Engineering Group, Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain; INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Alejandro Bachiller
- Biomedical Engineering Group, Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | - David Santamarta
- Servicio de Neurocirugía, Hospital Universitario de León, León, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, Department T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain
| |
Collapse
|
18
|
Poza J, Gómez C, García M, Bachiller A, Fernández A, Hornero R. Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer's disease using Jensen's divergence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1501-4. [PMID: 25570254 DOI: 10.1109/embc.2014.6943886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to analyze the changes that mild cognitive impairment (MCI) and Alzheimer's disease (AD) elicit in brain dynamics. For this task, the spontaneous magnetoencephalographic (MEG) activity from 36 AD patients, 18 MCI subjects and 24 healthy controls was analyzed. A disequilibrium measure, Jensen's divergence, was used to estimate the irregularity of neural dynamics. Results revealed that AD patients displayed significant changes (p<;0.05) in the patterns of irregularity in comparison with MCI subjects and healthy controls. Slight differences between MCI subjects and elderly controls were also found. Our results suggest that AD progression is accompanied by region-specific patterns of abnormalities in the neural activity.
Collapse
|