1
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Kern K, Vukelić M, Guggenberger R, Gharabaghi A. Oscillatory neurofeedback networks and poststroke rehabilitative potential in severely impaired stroke patients. Neuroimage Clin 2023; 37:103289. [PMID: 36525745 PMCID: PMC9791174 DOI: 10.1016/j.nicl.2022.103289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Motor restoration after severe stroke is often limited. However, some of the severely impaired stroke patients may still have a rehabilitative potential. Biomarkers that identify these patients are sparse. Eighteen severely impaired chronic stroke patients with a lack of volitional finger extension participated in an EEG study. During sixty-six trials of kinesthetic motor imagery, a brain-machine interface turned event-related beta-band desynchronization of the ipsilesional sensorimotor cortex into opening of the paralyzed hand by a robotic orthosis. A subgroup of eight patients participated in a subsequent four-week rehabilitation training. Changes of the movement extent were captured with sensors which objectively quantified even discrete improvements of wrist movement. Albeit with the same motor impairment level, patients could be differentiated into two groups, i.e., with and without task-related increase of bilateral cortico-cortical phase synchronization between frontal/premotor and parietal areas. This fronto-parietal integration (FPI) was associated with a significantly higher volitional beta modulation range in the ipsilesional sensorimotor cortex. Following the four-week training, patients with FPI showed significantly higher improvement in wrist movement than those without FPI. Moreover, only the former group improved significantly in the upper extremity Fugl-Meyer-Assessment score. Neurofeedback-related long-range oscillatory coherence may differentiate severely impaired stroke patients with regard to their rehabilitative potential, a finding that needs to be confirmed in larger patient cohorts.
Collapse
Affiliation(s)
- Kevin Kern
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Mathias Vukelić
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany.
| |
Collapse
|
3
|
Angerhöfer C, Colucci A, Vermehren M, Hömberg V, Soekadar SR. Post-stroke Rehabilitation of Severe Upper Limb Paresis in Germany - Toward Long-Term Treatment With Brain-Computer Interfaces. Front Neurol 2021; 12:772199. [PMID: 34867760 PMCID: PMC8637332 DOI: 10.3389/fneur.2021.772199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
Severe upper limb paresis can represent an immense burden for stroke survivors. Given the rising prevalence of stroke, restoration of severe upper limb motor impairment remains a major challenge for rehabilitation medicine because effective treatment strategies are lacking. Commonly applied interventions in Germany, such as mirror therapy and impairment-oriented training, are limited in efficacy, demanding for new strategies to be found. By translating brain signals into control commands of external devices, brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) represent promising, neurotechnology-based alternatives for stroke patients with highly restricted arm and hand function. In this mini-review, we outline perspectives on how BCI-based therapy can be integrated into the different stages of neurorehabilitation in Germany to meet a long-term treatment approach: We found that it is most appropriate to start therapy with BCI-based neurofeedback immediately after early rehabilitation. BCI-driven functional electrical stimulation (FES) and BMI robotic therapy are well suited for subsequent post hospital curative treatment in the subacute stage. BCI-based hand exoskeleton training can be continued within outpatient occupational therapy to further improve hand function and address motivational issues in chronic stroke patients. Once the rehabilitation potential is exhausted, BCI technology can be used to drive assistive devices to compensate for impaired function. However, there are several challenges yet to overcome before such long-term treatment strategies can be implemented within broad clinical application: 1. developing reliable BCI systems with better usability; 2. conducting more research to improve BCI training paradigms and 3. establishing reliable methods to identify suitable patients.
Collapse
Affiliation(s)
- Cornelius Angerhöfer
- Clinical Neurotechnology Lab, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annalisa Colucci
- Clinical Neurotechnology Lab, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Vermehren
- Clinical Neurotechnology Lab, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Hömberg
- Department of Neurology, SRH Gesundheitszentrum Bad Wimpfen GmbH, Bad Wimpfen, Germany
| | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Guggenberger R, Heringhaus M, Gharabaghi A. Brain-Machine Neurofeedback: Robotics or Electrical Stimulation? Front Bioeng Biotechnol 2020; 8:639. [PMID: 32733860 PMCID: PMC7358603 DOI: 10.3389/fbioe.2020.00639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated as training devices for neurorehabilitation, when active movements are no longer possible. When the hand is paralyzed following a stroke for example, a robotic orthosis, functional electrical stimulation (FES) or their combination may provide movement assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is given contingent to the movement intention or imagination, thereby closing the sensorimotor loop. Controlling these devices may be challenging or even frustrating. Direct comparisons between these two feedback modalities (robotics vs. FES) with regard to the workload they pose for the user are, however, missing. Twenty healthy subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17–21 Hz) was turned into passive opening of the contralateral hand by a robotic orthosis or FES in a randomized, cross-over block design. Mental demand, physical demand, temporal demand, performance, effort, and frustration level were captured with the NASA Task Load Index (NASA-TLX) questionnaire by comparing these workload components to each other (weights), evaluating them individually (ratings), and estimating the respective combinations (adjusted workload ratings). The findings were compared to the task-related aspects of active hand movement with EMG feedback. Furthermore, both feedback modalities were compared with regard to their BMI performance. Robotic and FES feedback had similar workloads when weighting and rating the different components. For both robotics and FES, mental demand was the most relevant component, and higher than during active movement with EMG feedback. The FES task led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403) than the robotic task in the adjusted workload ratings. Notably, the FES task showed a physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times closer to the robotic task. On average, significantly more onsets were reached during the robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94 out of 20 opportunities; p = 0.016), even though there were no significant differences between the BMI classification accuracies of the conditions (p = 0.806; CI = −0.027 to −0.034). These findings may inform the design of neurorehabilitation interfaces toward human-centered hardware for a more natural bidirectional interaction and acceptance by the user.
Collapse
Affiliation(s)
- Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Monika Heringhaus
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Vukelić M, Belardinelli P, Guggenberger R, Royter V, Gharabaghi A. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers. Neuroimage 2019; 195:190-202. [PMID: 30951847 DOI: 10.1016/j.neuroimage.2019.03.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
Volitional modulation and neurofeedback of sensorimotor oscillatory activity is currently being evaluated as a strategy to facilitate motor restoration following stroke. Knowledge on the interplay between this regional brain self-regulation, distributed network entrainment and handedness is, however, limited. In a randomized cross-over design, twenty-one healthy subjects (twelve right-handers [RH], nine left-handers [LH]) performed kinesthetic motor imagery of left (48 trials) and right finger extension (48 trials). A brain-machine interface turned event-related desynchronization in the beta frequency-band (16-22 Hz) during motor imagery into passive hand opening by a robotic orthosis. Thereby, every participant subsequently activated either the dominant (DH) or non-dominant hemisphere (NDH) to control contralateral hand opening. The task-related cortical networks were studied with electroencephalography. The magnitude of the induced oscillatory modulation range in the sensorimotor cortex was independent of both handedness (RH, LH) and hemispheric specialization (DH, NDH). However, the regional beta-band modulation was associated with different alpha-band networks in RH and LH: RH presented a stronger inter-hemispheric connectivity, while LH revealed a stronger intra-hemispheric interaction. Notably, these distinct network entrainments were independent of hemispheric specialization. In healthy subjects, sensorimotor beta-band activity can be robustly modulated by motor imagery and proprioceptive feedback in both hemispheres independent of handedness. However, right and left handers show different oscillatory entrainment of cortical alpha-band networks during neurofeedback. This finding may inform neurofeedback interventions in future to align them more precisely with the underlying physiology.
Collapse
Affiliation(s)
- Mathias Vukelić
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Paolo Belardinelli
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Vladislav Royter
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
6
|
Hong KS, Khan MJ. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review. Front Neurorobot 2017; 11:35. [PMID: 28790910 PMCID: PMC5522881 DOI: 10.3389/fnbot.2017.00035] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Muhammad Jawad Khan
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
7
|
Bassett DS, Khambhati AN, Grafton ST. Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity. Annu Rev Biomed Eng 2017; 19:327-352. [PMID: 28375650 PMCID: PMC6005206 DOI: 10.1146/annurev-bioeng-071516-044511] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain-machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer's tool kit.
Collapse
Affiliation(s)
- Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ankit N Khambhati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott T Grafton
- UCSB Brain Imaging Center and Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
| |
Collapse
|
8
|
Bauer R, Gharabaghi A. Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration. Front Neurosci 2017; 11:111. [PMID: 28348511 PMCID: PMC5346545 DOI: 10.3389/fnins.2017.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Closed-loop neuroprosthetics aim to compensate for lost function, e.g., by controlling external devices such as prostheses or wheelchairs. Such assistive approaches seek to maximize speed and classification accuracy for high-dimensional control. More recent approaches use similar technology, but aim to restore lost motor function in the long term. To achieve this goal, restorative neuroprosthetics attempt to facilitate motor re-learning and to strengthen damaged and/or alternative neural connections on the basis of neurofeedback training within rehabilitative environments. Such a restorative approach requires reinforcement learning of self-modulated brain activity which is considered to be beneficial for functional rehabilitation, e.g., improvement of β-power modulation over sensorimotor areas for post-stroke movement restoration. Patients with motor impairments, however, may also have a compromised ability for motor task-related regulation of the targeted brain activity. This would affect the estimation of feature weights and hence the classification accuracy of the feedback device. This, in turn, can frustrate the patients and compromise their motor learning. Furthermore, the feedback training may even become erroneous when unconstrained classifier adaptation-which is often used in assistive approaches-is also applied in this rehabilitation context. In conclusion, the conceptual switch from assistance toward restoration necessitates a methodological paradigm shift from classification accuracy toward instructional efficiency. Furthermore, a constrained feature space, a priori regularized feature weights, and difficulty adaptation present key elements of restorative brain interfaces. These factors need, therefore, to be addressed within a therapeutic framework to facilitate reinforcement learning of brain self-regulation for restorative purposes.
Collapse
Affiliation(s)
- Robert Bauer
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| |
Collapse
|
9
|
Naros G, Gharabaghi A. Physiological and behavioral effects of β-tACS on brain self-regulation in chronic stroke. Brain Stimul 2017; 10:251-259. [DOI: 10.1016/j.brs.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
|
10
|
Grimm F, Naros G, Gharabaghi A. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Front Neurosci 2016; 10:518. [PMID: 27895550 PMCID: PMC5108796 DOI: 10.3389/fnins.2016.00518] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing “assistance-as-needed” during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space (p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity (p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living.
Collapse
Affiliation(s)
- Florian Grimm
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tuebingen Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University of Tuebingen Tuebingen, Germany
| |
Collapse
|
11
|
Gharabaghi A. What Turns Assistive into Restorative Brain-Machine Interfaces? Front Neurosci 2016; 10:456. [PMID: 27790085 PMCID: PMC5061808 DOI: 10.3389/fnins.2016.00456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/21/2016] [Indexed: 12/18/2022] Open
Abstract
Brain-machine interfaces (BMI) may support motor impaired patients during activities of daily living by controlling external devices such as prostheses (assistive BMI). Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of lost motor function via neurofeedback training (restorative BMI). Using assistive BMI in a rehabilitation context does not automatically turn them into restorative devices. This perspective article suggests key features of restorative BMI and provides the supporting evidence: In summary, BMI may be referred to as restorative tools when demonstrating subsequently (i) operant learning and progressive evolution of specific brain states/dynamics, (ii) correlated modulations of functional networks related to the therapeutic goal, (iii) subsequent improvement in a specific task, and (iv) an explicit correlation between the modulated brain dynamics and the achieved behavioral gains. Such findings would provide the rationale for translating BMI-based interventions into clinical settings for reinforcement learning and motor rehabilitation following stroke.
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
12
|
Bauer R, Vukelić M, Gharabaghi A. What is the optimal task difficulty for reinforcement learning of brain self-regulation? Clin Neurophysiol 2016; 127:3033-3041. [DOI: 10.1016/j.clinph.2016.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/10/2016] [Accepted: 06/19/2016] [Indexed: 11/28/2022]
|
13
|
Bauer R, Fels M, Royter V, Raco V, Gharabaghi A. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation. Clin Neurophysiol 2016; 127:3156-3164. [DOI: 10.1016/j.clinph.2016.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
|
14
|
Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex. Neural Plast 2016; 2016:7365609. [PMID: 27610248 PMCID: PMC5004060 DOI: 10.1155/2016/7365609] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023] Open
Abstract
Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation.
Collapse
|
15
|
Grimm F, Walter A, Spüler M, Naros G, Rosenstiel W, Gharabaghi A. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Front Neurosci 2016; 10:367. [PMID: 27555805 PMCID: PMC4977295 DOI: 10.3389/fnins.2016.00367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
Brain-machine interface-controlled (BMI) neurofeedback training aims to modulate cortical physiology and is applied during neurorehabilitation to increase the responsiveness of the brain to subsequent physiotherapy. In a parallel line of research, robotic exoskeletons are used in goal-oriented rehabilitation exercises for patients with severe motor impairment to extend their range of motion (ROM) and the intensity of training. Furthermore, neuromuscular electrical stimulation (NMES) is applied in neurologically impaired patients to restore muscle strength by closing the sensorimotor loop. In this proof-of-principle study, we explored an integrated approach for providing assistance as needed to amplify the task-related ROM and the movement-related brain modulation during rehabilitation exercises of severely impaired patients. For this purpose, we combined these three approaches (BMI, NMES, and exoskeleton) in an integrated neuroprosthesis and studied the feasibility of this device in seven severely affected chronic stroke patients who performed wrist flexion and extension exercises while receiving feedback via a virtual environment. They were assisted by a gravity-compensating, seven degree-of-freedom exoskeleton which was attached to the paretic arm. NMES was applied to the wrist extensor and flexor muscles during the exercises and was controlled by a hybrid BMI based on both sensorimotor cortical desynchronization (ERD) and electromyography (EMG) activity. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. The hybrid BMI controlled the stimulation significantly better than the offline analyzed ERD (p = 0.028) or EMG (p = 0.021) modality alone. Neuromuscular stimulation could be well integrated into the exoskeleton-based training and amplified both the task-related ROM (p = 0.009) and the movement-related brain modulation (p = 0.019). Combining a hybrid BMI with neuromuscular stimulation and antigravity assistance augments upper limb function and brain activity during rehabilitation exercises and may thus provide a novel restorative framework for severely affected stroke patients.
Collapse
Affiliation(s)
- Florian Grimm
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Armin Walter
- Department of Computer Engineering, Wilhelm Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Martin Spüler
- Department of Computer Engineering, Wilhelm Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Wolfgang Rosenstiel
- Department of Computer Engineering, Wilhelm Schickard Institute for Computer Science, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
16
|
Grimm F, Gharabaghi A. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton. Front Neurosci 2016; 10:284. [PMID: 27445658 PMCID: PMC4917563 DOI: 10.3389/fnins.2016.00284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 11/25/2022] Open
Abstract
Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.
Collapse
Affiliation(s)
- Florian Grimm
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
17
|
Grimm F, Naros G, Gharabaghi A. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton. Front Neurosci 2016; 10:280. [PMID: 27445655 PMCID: PMC4914560 DOI: 10.3389/fnins.2016.00280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/06/2016] [Indexed: 11/13/2022] Open
Abstract
Assistive technology allows for intensive practice and kinematic measurements during rehabilitation exercises. More recent approaches attach a gravity-compensating multi-joint exoskeleton to the upper extremity to facilitate task-oriented training in three-dimensional space with virtual reality feedback. The movement quality, however, is mostly captured through end-point measures that lack information on proximal inter-joint coordination. This limits the differentiation between compensation strategies and genuine restoration both during the exercise and in the course of rehabilitation. We extended in this proof-of-concept study a commercially available seven degree-of-freedom arm exoskeleton by using the real-time sensor data to display a three-dimensional multi-joint visualization of the user's arm. Ten healthy subjects and three severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living assisted by the attached exoskeleton and received closed-loop online feedback of the three-dimensional movement in virtual reality. Patients in this pilot study differed significantly with regard to motor performance (accuracy, temporal efficiency, range of motion) and movement quality (proximal inter-joint coordination) from the healthy control group. In the course of 20 training and feedback sessions over 4 weeks, these pathological measures improved significantly toward the reference parameters of healthy participants. It was moreover feasible to capture the evolution of movement pattern kinematics of the shoulder and elbow and to quantify the individual degree of natural movement restoration for each patient. The virtual reality visualization and closed-loop feedback of joint-specific movement kinematics makes it possible to detect compensation strategies and may provide a tool to achieve the rehabilitation goals in accordance with the individual capacity for genuine functional restoration; a proposal that warrants further investigation in controlled studies with a larger cohort of stroke patients.
Collapse
Affiliation(s)
- Florian Grimm
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Germany
| |
Collapse
|
18
|
Royter V, Gharabaghi A. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization. Front Cell Neurosci 2016; 10:115. [PMID: 27242429 PMCID: PMC4861730 DOI: 10.3389/fncel.2016.00115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/20/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects-sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses-motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. OBJECTIVE The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. METHOD The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16-22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. RESULT The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. CONCLUSION These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation.
Collapse
Affiliation(s)
- Vladislav Royter
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
19
|
Naros G, Naros I, Grimm F, Ziemann U, Gharabaghi A. Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance. Neuroimage 2016; 134:142-152. [PMID: 27046109 DOI: 10.1016/j.neuroimage.2016.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022] Open
Abstract
Self-regulation of sensorimotor oscillations is currently researched in neurorehabilitation, e.g. for priming subsequent physiotherapy in stroke patients, and may be modulated by neurofeedback or transcranial brain stimulation. It has still to be demonstrated, however, whether and under which training conditions such brain self-regulation could also result in motor gains. Thirty-two right-handed, healthy subjects participated in a three-day intervention during which they performed 462 trials of kinesthetic motor-imagery while a brain-robot interface (BRI) turned event-related β-band desynchronization of the left sensorimotor cortex into the opening of the right hand by a robotic orthosis. Different training conditions were compared in a parallel-group design: (i) adaptive classifier thresholding and contingent feedback, (ii) adaptive classifier thresholding and non-contingent feedback, (iii) non-adaptive classifier thresholding and contingent feedback, and (iv) non-adaptive classifier thresholding and non-contingent feedback. We studied the task-related cortical physiology with electroencephalography and the behavioral performance in a subsequent isometric motor task. Contingent neurofeedback and adaptive classifier thresholding were critical for learning brain self-regulation which, in turn, led to behavioral gains after the intervention. The acquired skill for sustained sensorimotor β-desynchronization correlated significantly with subsequent motor improvement. Operant learning of brain self-regulation with a BRI may offer a therapeutic perspective for severely affected stroke patients lacking residual hand function.
Collapse
Affiliation(s)
- G Naros
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany.
| | - I Naros
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany; Centre for Integrative Neuroscience, University of Tuebingen, Germany
| | - F Grimm
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany; Centre for Integrative Neuroscience, University of Tuebingen, Germany
| | - U Ziemann
- Department of Neurology and Stroke, University of Tuebingen, Germany; Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany
| | - A Gharabaghi
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany; Centre for Integrative Neuroscience, University of Tuebingen, Germany.
| |
Collapse
|
20
|
De Marchis C, Santos Monteiro T, Simon-Martinez C, Conforto S, Gharabaghi A. Multi-contact functional electrical stimulation for hand opening: electrophysiologically driven identification of the optimal stimulation site. J Neuroeng Rehabil 2016; 13:22. [PMID: 26955873 PMCID: PMC4782521 DOI: 10.1186/s12984-016-0129-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Functional Electrical Stimulation (FES) is increasingly applied in neurorehabilitation. Particularly, the use of electrode arrays may allow for selective muscle recruitment. However, detecting the best electrode configuration constitutes still a challenge. METHODS A multi-contact set-up with thirty electrodes was applied for combined FES and electromyography (EMG) recording of the forearm. A search procedure scanned all electrode configurations by applying single, sub-threshold stimulation pulses while recording M-waves of the extensor digitorum communis (EDC), extensor carpi radialis (ECR) and extensor carpi ulnaris (ECU) muscles. The electrode contacts with the best electrophysiological response were then selected for stimulation with FES bursts while capturing finger/wrist extension and radial/ulnar deviation with a kinematic glove. RESULTS The stimulation electrodes chosen on the basis of M-waves of the EDC/ECR/ECU muscles were able to effectively elicit the respective finger/wrist movements for the targeted extension and/or deviation with high specificity in two different hand postures. CONCLUSIONS A subset of functionally relevant stimulation electrodes could be selected fast, automatic and non-painful from a multi-contact array on the basis of muscle responses to subthreshold stimulation pulses. The selectivity of muscle recruitment predicted the kinematic pattern. This electrophysiologically driven approach would thus allow for an operator-independent positioning of the electrode array in neurorehabilitation.
Collapse
Affiliation(s)
- Cristiano De Marchis
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Otfried-Mueller-Str.45, 72076, Tübingen, Germany. .,Neuroprosthetics Research, Centre for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany. .,Laboratory of Bioengineering BioLab3, Department of Engineering, University Roma TRE, Via Vito Volterra 62, 00146, Rome, Italy.
| | - Thiago Santos Monteiro
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Otfried-Mueller-Str.45, 72076, Tübingen, Germany.,Neuroprosthetics Research, Centre for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany
| | - Cristina Simon-Martinez
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Otfried-Mueller-Str.45, 72076, Tübingen, Germany.,Neuroprosthetics Research, Centre for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany
| | - Silvia Conforto
- Laboratory of Bioengineering BioLab3, Department of Engineering, University Roma TRE, Via Vito Volterra 62, 00146, Rome, Italy
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University, Otfried-Mueller-Str.45, 72076, Tübingen, Germany. .,Neuroprosthetics Research, Centre for Integrative Neuroscience, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
21
|
Brauchle D, Vukelić M, Bauer R, Gharabaghi A. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Front Hum Neurosci 2015; 9:564. [PMID: 26528168 PMCID: PMC4607784 DOI: 10.3389/fnhum.2015.00564] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 09/25/2015] [Indexed: 11/13/2022] Open
Abstract
While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns—but different aptitudes—of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject’s arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants’ efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that warrants further investigation in a larger cohort of stroke patients.
Collapse
Affiliation(s)
- Daniel Brauchle
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tübingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tübingen, Germany
| | - Mathias Vukelić
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tübingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tübingen, Germany
| | - Robert Bauer
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tübingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tübingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery and Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen Tübingen, Germany ; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tübingen, Germany
| |
Collapse
|