1
|
Pan H, Wang X, Feng A, Cheng Q, Chen X, He X, Qin X, Sha X, Fu S, Chi C, Wang X. Nanoparticle radiosensitization: from extended local effect modeling to a survival modification framework of compound Poisson additive killing and its carbon dots validation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4c48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To construct an analytical model instead of local effect modeling for the prediction of the biological effectiveness of nanoparticle radiosensitization. Approach. An extended local effects model is first proposed with a more comprehensive description of the nanoparticles mediated local killing enhancements, but meanwhile puts forward challenging issues that remain difficult and need to be further studied. As a novel method instead of local effect modeling, a survival modification framework of compound Poisson additive killing is proposed, as the consequence of an independent additive killing by the assumed equivalent uniform doses of individual nanoparticles per cell under the LQ model. A compound Poisson killing (CPK) model based on the framework is thus derived, giving a general expression of nanoparticle mediated LQ parameter modification. For practical use, a simplified form of the model is also derived, as a concentration dependent correction only to the α parameter, with the relative correction (α″/α) dominated by the mean number, and affected by the agglomeration of nanoparticles per cell. For different agglomeration state, a monodispersion model of the dispersity factor η = 1, and an agglomeration model of 2/3 < η < 1, are provided for practical prediction of (α″/α) value respectively. Main results. Initial validation by the radiosensitization of HepG2 cells by carbon dots showed a high accuracy of the CPK model. In a safe range of concentration (0.003–0.03 μg μl−1) of the carbon dots, the prediction errors of the monodispersion and agglomeration models were both within 2%, relative to the clonogenic survival data of the sensitized HepG2 cells. Significance. The compound Poisson killing model provides a novel approach for analytical prediction of the biological effectiveness of nanoparticle radiosensitization, instead of local effect modeling.
Collapse
|
2
|
Li WB, Belchior A, Beuve M, Chen YZ, Di Maria S, Friedland W, Gervais B, Heide B, Hocine N, Ipatov A, Klapproth AP, Li CY, Li JL, Multhoff G, Poignant F, Qiu R, Rabus H, Rudek B, Schuemann J, Stangl S, Testa E, Villagrasa C, Xie WZ, Zhang YB. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys Med 2020; 69:147-163. [PMID: 31918367 DOI: 10.1016/j.ejmp.2019.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Targeted radiation therapy has seen an increased interest in the past decade. In vitro and in vivo experiments showed enhanced radiation doses due to gold nanoparticles (GNPs) to tumors in mice and demonstrated a high potential for clinical application. However, finding a functionalized molecular formulation for actively targeting GNPs in tumor cells is challenging. Furthermore, the enhanced energy deposition by secondary electrons around GNPs, particularly by short-ranged Auger electrons is difficult to measure. Computational models, such as Monte Carlo (MC) radiation transport codes, have been used to estimate the physical quantities and effects of GNPs. However, as these codes differ from one to another, the reliability of physical and dosimetric quantities needs to be established at cellular and molecular levels, so that the subsequent biological effects can be assessed quantitatively. METHODS In this work, irradiation of single GNPs of 50 nm and 100 nm diameter by X-ray spectra generated by 50 and 100 peak kilovoltages was simulated for a defined geometry setup, by applying multiple MC codes in the EURADOS framework. RESULTS The mean dose enhancement ratio of the first 10 nm-thick water shell around a 100 nm GNP ranges from 400 for 100 kVp X-rays to 600 for 50 kVp X-rays with large uncertainty factors up to 2.3. CONCLUSIONS It is concluded that the absolute dose enhancement effects have large uncertainties and need an inter-code intercomparison for a high quality assurance; relative properties may be a better measure until more experimental data is available to constrain the models.
Collapse
Affiliation(s)
- W B Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - A Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - M Beuve
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - Y Z Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - W Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - B Gervais
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - B Heide
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - N Hocine
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - A Ipatov
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
| | - A P Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Y Li
- Department of Engineering Physics, Tsinghua University, Beijing, China; Nuctech Company Limited, Beijing, China
| | - J L Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - G Multhoff
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - F Poignant
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - R Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - H Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - B Rudek
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - J Schuemann
- Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - S Stangl
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - E Testa
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - C Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - W Z Xie
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Y B Zhang
- Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
3
|
Liu R, Zhao T, Zhao X, Reynoso FJ. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double‐strand breaks with mixed‐physics Monte Carlo simulation. Med Phys 2019; 46:5314-5325. [DOI: 10.1002/mp.13813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Affiliation(s)
- Ruirui Liu
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Tianyu Zhao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Xiandong Zhao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| |
Collapse
|
4
|
McNamara AL, Ramos-Méndez J, Perl J, Held K, Dominguez N, Moreno E, Henthorn NT, Kirkby KJ, Meylan S, Villagrasa C, Incerti S, Faddegon B, Paganetti H, Schuemann J. Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit. Phys Med Biol 2018; 63:175018. [PMID: 30088810 DOI: 10.1088/1361-6560/aad8eb] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.
Collapse
Affiliation(s)
- Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit St, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol 2018; 63:02TR01. [PMID: 29125831 DOI: 10.1088/1361-6560/aa99ce] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e.g. gadolinium, platinum, iron oxide, hafnium) and other therapeutic radiation sources such as ion beams. It is thus of interest to the research community to consolidate findings from the different studies and summarise progress to date, as well as to identify strategies that offer promising opportunities for clinical translation. This is the purpose of this Topical Review.
Collapse
Affiliation(s)
- Zdenka Kuncic
- School of Physics and Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
6
|
Lacombe S, Porcel E, Scifoni E. Particle therapy and nanomedicine: state of art and research perspectives. Cancer Nanotechnol 2017; 8:9. [PMID: 29213338 PMCID: PMC5698390 DOI: 10.1186/s12645-017-0029-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer radiation therapy with charged particle beams, called particle therapy, is a new therapeutic treatment presenting major advantages when compared to conventional radiotherapy. Because ions have specific ballistic properties and a higher biological effectiveness, they are superior to x-rays. Numerous medical centres are starting in the world using mostly protons but also carbon ions as medical beams. Several investigations are attempting to reduce the cost/benefit ratio and enlarge the range of therapeutic indications. A major limitation of particle therapy is the presence of low but significant damage induced in healthy tissues located at the entrance of the ion track prior to reaching the tumour. It is thus a major challenge to improve the targeting of the tumours, concentrating radiation effects in the malignance. A novel strategy, based on the addition of nanoparticles targeting the tumour, was suggested over a decade ago to improve the performance of conventional photon therapy. Recently, similar developments have emerged for particle therapy and the amount of research is now exploding. In this paper, we review the experimental results, as well as theoretical and simulation studies that shed light in the promising outcomes of this strategy and in the underpinning mechanisms. Several experiments provide consistent evidence of significant enhancement of ion radiation effects in the presence of nanoparticles. In view of implementing this strategy for cancer treatment, simulation studies have begun to establish the rationale and the specificity of this effect. In addition, these studies will help to outline a list of possible mechanisms and to predict the impact of ion beams and nanoparticle characteristics. Many questions remain unsolved, but the findings of these first studies are encouraging and open new challenges. After summarizing the main results in the field, we propose a roadmap to pursue future research with the aim to strengthen the potential interplay between particle therapy and nanomedicine.
Collapse
Affiliation(s)
- Sandrine Lacombe
- Institut des Sciences Moléculaires d'Orsay (UMR 8214) Bât 351, University Paris Saclay, University of Paris Sud, CNRS, 91405 Orsay Cedex, France
| | - Erika Porcel
- Institut des Sciences Moléculaires d'Orsay (UMR 8214) Bât 351, University Paris Saclay, University of Paris Sud, CNRS, 91405 Orsay Cedex, France
| | - Emanuele Scifoni
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany.,TIFPA-INFN, Trento Institute for Fundamental Physics and Applications, University of Trento, 38121 Trento, Italy
| |
Collapse
|
7
|
Delorme R, Taupin F, Flaender M, Ravanat JL, Champion C, Agelou M, Elleaume H. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med Phys 2017; 44:5949-5960. [PMID: 28886212 DOI: 10.1002/mp.12570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Nanoparticles appear as a novel tool to enhance the effectiveness of radiotherapy in cancer treatments. Many parameters influence their efficacy, such as their size, concentration, composition, their cellular localization, as well as the photon source energy. The current Monte Carlo study aims at comparing the dose-enhancement in presence of gadolinium (Gd), either as isolated atoms or atoms clustered in nanoparticles (NPs), by investigating the role played by these physical parameters at the cellular and the nanometer scale. In parallel, in vitro assays were performed in presence of either the gadolinium contrast agent (GdCA) Magnevist® or ultrasmall gadolinium NPs (GdNPs, 3 nm) for comparison with the simulations. METHODS PENELOPE Monte Carlo Code was used for in silico dose calculations. Monochromatic photon beams were used to calculate dose enhancements in different cell compartments and low-energy secondary electron spectra dependence with energy. Particular attention has been placed on the interplay between the X-ray beam energy, the Gd localization and its distance from cellular targets. Clonogenic assays were used to quantify F98 rat glioma cell survival after irradiation in the presence of GdNPs or GdCA, using monochromatic X-rays with energies in the 30 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. The simulations that correspond to the experimental conditions were compared with the experimental results. RESULTS In silico, a highly heterogeneous and clustered Gd-atom distribution, a massive production of low energy electrons around GdNPs and an optimal X-ray beam energy, above the Gd K-edge, were key factors found to increase microscopic doses, which could potentially induce cell death. The different Gd localizations studied all resulted in a lower dose enhancement for the nucleus component than for cytoplasm or membrane compartments, with a maximum dose-enhancement factor (DEF) found at 65 keV and 58 keV, respectively. In vitro, radiosensitization was observed with GdNPs incubated 5 h with the cells (2.1 mg Gd/mL) at all energies. Experimental DEFs were found to be greater than computational DEFs but follow a similar trend with irradiation energy. However, an important radiosensitivity was observed experimentally with GdNPs at high energy (1.25 MeV), whereas no effect was expected from modeling. This effect was correlated with GdNPs incubation time. In vitro, GdCA provided no dose enhancement at 1.25 MeV energies, in agreement with computed data. CONCLUSIONS These results provide a foundation on which to base optimizations of the physical parameters in Gd radiation-enhanced therapy. Strong evidence was provided that GdCA or GdNPs could both be used for radiation dose-enhancement therapy. There in vivo biological distribution, in the tumor volume and at the cellular scale, will be the key factor for providing large dose enhancements and determine their therapeutic efficacy.
Collapse
Affiliation(s)
- Rachel Delorme
- CEA, LIST, F-91191, Gif-sur-Yvette, France.,IMNC Laboratory, UMR 8165-CNRS/IN2P3, Paris-Saclay University, 91405, Orsay, France
| | - Florence Taupin
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Mélanie Flaender
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Christophe Champion
- Centre d'Études Nucléaires de Bordeaux Gradignan (CENBG), CNRS/IN2P3, Université de Bordeaux, Bordeaux, France
| | | | - Hélène Elleaume
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France
| |
Collapse
|
8
|
A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation. Sci Rep 2017; 7:44752. [PMID: 28300190 PMCID: PMC5353761 DOI: 10.1038/srep44752] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/13/2017] [Indexed: 11/08/2022] Open
Abstract
Gold nanoparticles (GNPs) have been demonstrated as effective radiosensitizing agents in a range of preclinical models using broad field sources of various energies. This study aimed to distinguish between these mechanisms by applying subcellular targeting using a soft X-ray microbeam in combination with GNPs. DNA damage and repair kinetics were determined following nuclear and cytoplasmic irradiation using a soft X-ray (carbon K-shell, 278 eV) microbeam in MDA-MB-231 breast cancer and AG01522 fibroblast cells with and without GNPs. To investigate the mechanism of the GNP induced radiosensitization, GNP-induced mitochondrial depolarisation was quantified by TMRE staining, and levels of DNA damage were compared in cells with depolarised and functional mitochondria. Differential effects were observed following radiation exposure between the two cell lines. These findings were validated 24 hours after removal of GNPs by flow cytometry analysis of mitochondrial depolarisation. This study provides further evidence that GNP radiosensitisation is mediated by mitochondrial function and it is the first report applying a soft X-ray microbeam to study the radiobiological effects of GNPs to enable the separation of physical and biological effects.
Collapse
|