1
|
Mallphanov IL, Eroshik MY, Safonov DA, Sychev AV, Bulakov VE, Lavrova AI. Novel Approach to Increasing the Amplitude of the Mechanical Oscillations of Self-Oscillating Gels: Introduction of Catalysts Both as Pendant Groups and as Crosslinkers. Gels 2024; 10:727. [PMID: 39590083 PMCID: PMC11594043 DOI: 10.3390/gels10110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
For the first time, we introduced chemomechanical self-oscillating poly(N-isopropylacrylamide)-based gels containing catalytically active Fe or Ru complexes both as crosslinkers and as pendant groups. All the obtained gels exhibited sustained autonomous oscillations driven by the Belousov-Zhabotinsky reaction within their structure. The Ru complex-based gels also demonstrated pronounced chemomechanical oscillations; they periodically swelled/shrunk when the catalyst was reduced/oxidized. It was found that the combination of catalytically active cross-linking and pendant Ru complexes in the same gel led to a change in the structure of the gel and a significant increase in the amplitude of its mechanical oscillations. The proposed approach allowed for increasing the amplitude of the mechanical oscillations of self-oscillating gels and opened up new possibilities for adjusting their characteristics. We believe that these gels hold potential for the development of soft actuators and systems capable of signal processing through propagating and interacting chemical waves.
Collapse
Affiliation(s)
- Ilya L. Mallphanov
- Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia; (M.Y.E.); (D.A.S.); (A.I.L.)
| | - Michail Y. Eroshik
- Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia; (M.Y.E.); (D.A.S.); (A.I.L.)
| | - Dmitry A. Safonov
- Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia; (M.Y.E.); (D.A.S.); (A.I.L.)
| | - Alexander V. Sychev
- Research Center for Condensed Matter Physics, Kursk State University, 33 Radishcheva Street, Kursk 305000, Russia;
| | - Vyacheslav E. Bulakov
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, 6-8 L’va Tolstogo Street, Saint-Petersburg 197022, Russia;
| | - Anastasia I. Lavrova
- Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia; (M.Y.E.); (D.A.S.); (A.I.L.)
- Saint-Petersburg State Research Institute of Phthisiopulmonology, 2-4 Ligovsky Avenue, Saint-Petersburg 191036, Russia
| |
Collapse
|
2
|
Omidian H, Wilson RL, Babanejad N. Bioinspired Polymers: Transformative Applications in Biomedicine and Regenerative Medicine. Life (Basel) 2023; 13:1673. [PMID: 37629530 PMCID: PMC10456054 DOI: 10.3390/life13081673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Bioinspired polymers have emerged as a promising field in biomaterials research, offering innovative solutions for various applications in biomedical engineering. This manuscript provides an overview of the advancements and potential of bioinspired polymers in tissue engineering, regenerative medicine, and biomedicine. The manuscript discusses their role in enhancing mechanical properties, mimicking the extracellular matrix, incorporating hydrophobic particles for self-healing abilities, and improving stability. Additionally, it explores their applications in antibacterial properties, optical and sensing applications, cancer therapy, and wound healing. The manuscript emphasizes the significance of bioinspired polymers in expanding biomedical applications, addressing healthcare challenges, and improving outcomes. By highlighting these achievements, this manuscript highlights the transformative impact of bioinspired polymers in biomedical engineering and sets the stage for further research and development in the field.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (N.B.)
| | | | | |
Collapse
|
4
|
Mallphanov IL, Vanag VK. Chemical micro-oscillators based on the Belousov–Zhabotinsky reaction. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The results of studies on the development of micro-oscillators (MOs) based on the Belousov –Zhabotinsky (BZ) oscillatory chemical reaction are integrated and systematized. The mechanisms of the BZ reaction and the methods of immobilization of the catalyst of the BZ reaction in micro-volumes are briefly discussed. Methods for creating BZ MOs based on water microdroplets in the oil phase and organic and inorganic polymer microspheres are considered. Methods of control and management of the dynamics of BZ MO networks are described, including methods of MO synchronization. The prospects for the design of neural networks of MOs with intelligent-like behaviour are outlined. Such networks present a new area of nonlinear chemistry, including, in particular, the creation of a chemical ‘computer’.
The bibliography includes 250 references.
Collapse
|
5
|
Equilibrium swelling of multi-stimuli-responsive copolymer gels. J Mech Behav Biomed Mater 2021; 121:104623. [PMID: 34098283 DOI: 10.1016/j.jmbbm.2021.104623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022]
Abstract
Copolymer gels prepared by polymerization of thermo-responsive and anionic monomers demonstrate strong sensitivity to several triggers such as temperature, pH and ionic strength of aqueous solutions. For biomedical applications of these materials (as on-off switches in controlled drug delivery and release), fine tuning of their volume phase transition temperature (VPTT) and a sharp decay in degree of swelling upon transition from the swollen to the collapsed state are needed. These requirements are fulfilled under swelling of copolymer gels and microgels in water under acidic conditions, but are violated when tests are conducted under alkaline conditions or in aqueous solutions of salts with physiological salinity. A model is developed for equilibrium swelling of multi-stimuli-responsive copolymer gels in aqueous solutions with arbitrary pH and molar fractions of a monovalent salt. Unlike conventional approaches, the model accounts for secondary interactions between chains (hydrogen bonding) to describe the kinetics of aggregation of hydrophobic segments above VPTT. Material constants are determined by fitting experimental swelling diagrams on poly(N-isopropylacrylamide-co-sodium acrylate) gels with various molar fractions of ionic monomers. The effects of temperature, pH and molar fraction of salt on the equilibrium degree of swelling below and above VPTT are studied numerically.
Collapse
|
7
|
Li C, Iscen A, Sai H, Sato K, Sather NA, Chin SM, Álvarez Z, Palmer LC, Schatz GC, Stupp SI. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation. NATURE MATERIALS 2020; 19:900-909. [PMID: 32572204 DOI: 10.1038/s41563-020-0707-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/12/2020] [Indexed: 05/19/2023]
Abstract
The development of synthetic structures that mimic mechanical actuation in living matter such as autonomous translation and shape changes remains a grand challenge for materials science. In living systems the integration of supramolecular structures and covalent polymers contributes to the responsive behaviour of membranes, muscles and tendons, among others. Here we describe hybrid light-responsive soft materials composed of peptide amphiphile supramolecular polymers chemically bonded to spiropyran-based networks that expel water in response to visible light. The supramolecular polymers form a reversibly deformable and water-draining skeleton that mechanically reinforces the hybrid and can also be aligned by printing methods. The noncovalent skeleton embedded in the network thus enables faster bending and flattening actuation of objects, as well as longer steps during the light-driven crawling motion of macroscopic films. Our work suggests that hybrid bonding polymers, which integrate supramolecular assemblies and covalent networks, offer strategies for the bottom-up design of soft matter that mimics living organisms.
Collapse
Affiliation(s)
- Chuang Li
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Aysenur Iscen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Hiroaki Sai
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Kohei Sato
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Nicholas A Sather
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Stacey M Chin
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Zaida Álvarez
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Liam C Palmer
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - George C Schatz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Liu J, Erol O, Pantula A, Liu W, Jiang Z, Kobayashi K, Chatterjee D, Hibino N, Romer LH, Kang SH, Nguyen TD, Gracias DH. Dual-Gel 4D Printing of Bioinspired Tubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8492-8498. [PMID: 30694051 PMCID: PMC6785027 DOI: 10.1021/acsami.8b17218] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The distribution of periodic patterns of materials with radial or bilateral symmetry is a universal natural design principle. Among the many biological forms, tubular shapes are a common motif in many organisms, and they are also important for bioimplants and soft robots. However, the simple design principle of strategic placement of 3D printed segments of swelling and nonswelling materials to achieve widely different functionalities is yet to be demonstrated. Here, we report the design, fabrication, and characterization of segmented 3D printed gel tubes composed of an active thermally responsive swelling gel (poly N-isopropylacrylamide) and a passive thermally nonresponsive gel (polyacrylamide). Using finite element simulations and experiments, we report a variety of shape changes including uniaxial elongation, radial expansion, bending, and gripping based on two gels. Actualization and characterization of thermally induced shape changes are of key importance to robotics and biomedical engineering. Our studies present rational approaches to engineer complex parameters with a high level of customization and tunability for additive manufacturing of dynamic gel structures.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Mechanical Engineering, Johns Hopkins
University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Ozan Erol
- Department of Mechanical Engineering, Johns Hopkins
University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Hopkins Extreme Materials Institute, 3400 N Charles Street,
Baltimore,Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical & Biomolecular Engineering,
Johns Hopkins University, 3400 N Charles Street, Baltimore, Baltimore, MD 21218,
USA
| | - Aishwarya Pantula
- Department of Chemical & Biomolecular Engineering,
Johns Hopkins University, 3400 N Charles Street, Baltimore, Baltimore, MD 21218,
USA
| | - Wangqu Liu
- Department of Chemical & Biomolecular Engineering,
Johns Hopkins University, 3400 N Charles Street, Baltimore, Baltimore, MD 21218,
USA
| | - Zhuoran Jiang
- Department of Chemical & Biomolecular Engineering,
Johns Hopkins University, 3400 N Charles Street, Baltimore, Baltimore, MD 21218,
USA
| | - Kunihiko Kobayashi
- JSR Corporation, 1-9-2, Higashi-Shimbashi, Minato-ku, Tokyo
105-8640, Japan
| | - Devina Chatterjee
- Department of Chemical & Biomolecular Engineering,
Johns Hopkins University, 3400 N Charles Street, Baltimore, Baltimore, MD 21218,
USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Department of Surgery, 1800
Orleans Street, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Lewis H. Romer
- Departments of Anesthesiology and Critical Care Medicine,
Cell Biology, Pediatrics, Johns Hopkins University School of Medicine, 1800 Orleans
Street, Baltimore, MD 21287, USA
- Biomedical Engineering and the Center for Cell Dynamics,
Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD
21287, USA
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins
University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Hopkins Extreme Materials Institute, 3400 N Charles Street,
Baltimore,Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University,
3400 N Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins
University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Hopkins Extreme Materials Institute, 3400 N Charles Street,
Baltimore,Johns Hopkins University, Baltimore, MD 21218, USA
| | - David H. Gracias
- Department of Chemical & Biomolecular Engineering,
Johns Hopkins University, 3400 N Charles Street, Baltimore, Baltimore, MD 21218,
USA
- Department of Materials Science and Engineering, Johns
Hopkins University, 3400 N Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|