1
|
Zhou S, Hou S, Lu Q. Polyphosphazene Microparticles with High Free Radical Scavenging Activity for Skin Photoprotection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32649-32661. [PMID: 38865694 DOI: 10.1021/acsami.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Ultraviolet (UV) filters are the core ingredients in sunscreens and protect against UV-induced skin damage. Nevertheless, their safety and effectiveness have been questioned in terms of their poor photostability, skin penetration, and UV-induced generation of deleterious reactive oxygen species (ROS). Herein, an organic UV filter self-framed microparticle sunblock was exploited, in which quercetin (QC) and hexachlorocyclotriphosphazene (HCCP) were self-constructed into microparticles (HCCP-QC MPs) by facile precipitation polymerization without any carriers. HCCP-QC MPs could not only significantly extend the UV shielding range to the whole UV region but also remarkably reduce UV-induced ROS while avoiding direct skin contact and the resulting epidermal penetration of small-molecule QC. Meanwhile, HCCP-QC MPs possess a high QC-loading ability (697 mg g-1) by QC itself as the microparticles' building blocks. In addition, there is no leakage issue with small molecules due to its covalently cross-linked structure. In vitro and vivo experiments also demonstrated that the HCCP-QC MPs have excellent UV protection properties and effective ROS scavenging ability without toxicity. In summary, effective UV-shielding and ROS scavenging ability coupled with excellent biocompatibility and nonpenetration of small molecules make it a broad prospect in skin protection.
Collapse
Affiliation(s)
- Shiliu Zhou
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shenglei Hou
- The Center for Drug Evaluation, Monitoring and Assessment of Fujian Province, 156 Dongpu Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Abdulmalik S, Gallo J, Nip J, Katebifar S, Arul M, Lebaschi A, Munch LN, Bartly JM, Choudhary S, Kalajzic I, Banasavadi-Siddegowdae YK, Nukavarapu SP, Kumbar SG. Nanofiber matrix formulations for the delivery of Exendin-4 for tendon regeneration: In vitro and in vivo assessment. Bioact Mater 2023; 25:42-60. [PMID: 36733930 PMCID: PMC9876843 DOI: 10.1016/j.bioactmat.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Tendon and ligament injuries are the most common musculoskeletal injuries, which not only impact the quality of life but result in a massive economic burden. Surgical interventions for tendon/ligament injuries utilize biological and/or engineered grafts to reconstruct damaged tissue, but these have limitations. Engineered matrices confer superior physicochemical properties over biological grafts but lack desirable bioactivity to promote tissue healing. While incorporating drugs can enhance bioactivity, large matrix surface areas and hydrophobicity can lead to uncontrolled burst release and/or incomplete release due to binding. To overcome these limitations, we evaluated the delivery of a peptide growth factor (exendin-4; Ex-4) using an enhanced nanofiber matrix in a tendon injury model. To overcome drug surface binding due to matrix hydrophobicity of poly(caprolactone) (PCL)-which would be expected to enhance cell-material interactions-we blended PCL and cellulose acetate (CA) and electrospun nanofiber matrices with fiber diameters ranging from 600 to 1000 nm. To avoid burst release and protect the drug, we encapsulated Ex-4 in the open lumen of halloysite nanotubes (HNTs), sealed the HNT tube endings with a polymer blend, and mixed Ex-4-loaded HNTs into the polymer mixture before electrospinning. This reduced burst release from ∼75% to ∼40%, but did not alter matrix morphology, fiber diameter, or tensile properties. We evaluated the bioactivity of the Ex-4 nanofiber formulation by culturing human mesenchymal stem cells (hMSCs) on matrix surfaces for 21 days and measuring tenogenic differentiation, compared with nanofiber matrices in basal media alone. Strikingly, we observed that Ex-4 nanofiber matrices accelerated the hMSC proliferation rate and elevated levels of sulfated glycosaminoglycan, tendon-related genes (Scx, Mkx, and Tnmd), and ECM-related genes (Col-I, Col-III, and Dcn), compared to control. We then assessed the safety and efficacy of Ex-4 nanofiber matrices in a full-thickness rat Achilles tendon defect with histology, marker expression, functional walking track analysis, and mechanical testing. Our analysis confirmed that Ex-4 nanofiber matrices enhanced tendon healing and reduced fibrocartilage formation versus nanofiber matrices alone. These findings implicate Ex-4 as a potentially valuable tool for tendon tissue engineering.
Collapse
Affiliation(s)
- Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Jack Gallo
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jonathan Nip
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Amir Lebaschi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Lucas N. Munch
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jenna M. Bartly
- Department of Immunology, Center on Aging, University of Connecticut Health, Farmington, CT, USA
| | - Shilpa Choudhary
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, USA
| | | | - Syam P. Nukavarapu
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Advanced Electrospun Nanofibrous Stem Cell Niche for Bone Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Ning C, Gao C, Li P, Fu L, Chen W, Liao Z, Xu Z, Yuan Z, Guo W, Sui X, Liu S, Guo Q. Dual‐Phase Aligned Composite Scaffolds Loaded with Tendon‐Derived Stem Cells for Achilles Tendon Repair. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Cangjian Gao
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Pinxue Li
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Liwei Fu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Wei Chen
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiyao Liao
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zizheng Xu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200030 P. R. China
| | - Weimin Guo
- Department of Orthopaedic Surgery Guangdong Provincial Key Laboratory of Orthopedics and Traumatology First Affiliated Hospital Sun Yat‐sen University No. 58 Zhongshan Second Road, Yuexiu District Guangzhou Guangdong 510080 P. R. China
| | - Xiang Sui
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Shuyun Liu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Quanyi Guo
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| |
Collapse
|
6
|
Ramos DM, Abdulmalik S, Arul MR, Sardashti N, Banasavadi-Siddegowda YK, Nukavarapu SP, Drissi H, Kumbar SG. Insulin-Functionalized Bioactive Fiber Matrices with Bone Marrow-Derived Stem Cells in Rat Achilles Tendon Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2851-2861. [PMID: 35642544 DOI: 10.1021/acsabm.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately half of annual musculoskeletal injuries in the US involve tendon tears. The naturally hypocellular and hypovascular tendon environment makes tendons injury-prone and heal slowly. Tendon tissue engineering strategies often use biomimetic scaffolds combined with bioactive factors and/or cells to enhance healing. FDA-approved growth factors to promote tendon healing are lacking, which highlights the need for safe and effective bioactive factors. Our previous work evaluated insulin as a bioactive factor and identified an optimal dose to promote in vitro mesenchymal stem cell survival, division, and tenogenesis. The present work evaluates the ability of insulin-functionalized electrospun nanofiber matrices with or without mesenchymal stem cells to enhance tendon repair in a rat Achilles injury model. Electrospun nanofiber matrices were functionalized with insulin, cultured with or without mesenchymal stem cells, and sutured to transected Achilles tendons in rats. We analyzed rat tendons 4 and 8 weeks after surgery for the tendon morphology, collagen production, and mechanical properties. Bioactive insulin-functionalized fiber matrices with mesenchymal stem cells resulted in significantly increased collagen I and III at 4 and 8 weeks postsurgery. Additionally, these matrices supported highly aligned collagen fibrils in the regenerated tendon tissue at 8 weeks. However, treatment- and control-regenerated tissues had similar tensile properties at 8 weeks, which were less than that of the native Achilles tendon. Our preliminary results establish the benefits of insulin-functionalized fiber matrices in promoting higher levels of collagen synthesis and alignment needed for functional recovery of tendon repair.
Collapse
Affiliation(s)
- Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Naseem Sardashti
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hicham Drissi
- Department of Orthopedic Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322-1007, United States
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
7
|
Wang M, Lin S, Mequanint K. Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells. Polymers (Basel) 2022; 14:polym14081555. [PMID: 35458303 PMCID: PMC9025042 DOI: 10.3390/polym14081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues.
Collapse
|
8
|
Zhu Y, Wu W, Xu T, Xu H, Zhong Y, Zhang L, Ma Y, Sui X, Wang B, Feng X, Mao Z. Effect of weak intermolecular interactions in micro/nanoscale polyphosphazenes and polyethylene terephthalate composites on flame retardancy. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanzhao Zhu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Wei Wu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Tong Xu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Hong Xu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Yimeng Ma
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHU Donghua University Shanghai China
- National Engineering Research Center for Dyeing and Finishing of Textiles Donghua University Shanghai China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Donghua University Shanghai China
| |
Collapse
|
9
|
Chen F, Teniola OR, Laurencin CT. Biodegradable Polyphosphazenes for Regenerative Engineering. JOURNAL OF MATERIALS RESEARCH 2022; 37:1417-1428. [PMID: 36203785 PMCID: PMC9531846 DOI: 10.1557/s43578-022-00551-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 05/05/2023]
Abstract
Regenerative engineering is a field that seeks to regenerate complex tissues and biological systems, rather than simply restore and repair individual tissues or organs. Since the first introduction of regenerative engineering in 2012, numerous research has been devoted to the development of this field. Biodegradable polymers such as polyphosphazenes in particular have drawn significant interest as regenerative engineering materials for their synthetic flexibility in designing into materials with a wide range of mechanical properties, degradation rates, and chemical functionality. These polyphosphazenes can go through complete hydrolytic degradation and provide harmlessly and pH neutral buffering degradation products such as phosphates and ammonia, which is crucial for reducing inflammation in vivo. Here, we discuss the current accomplishments of polyphosphazene, different methods for synthesizing them, and their applications in tissue regeneration such as bones, nerves, and elastic tissues.
Collapse
Affiliation(s)
- Feiyang Chen
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
| | - O R Teniola
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut
- Connecticut Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
- Connecticut Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
10
|
Fukada K, Tachibana K, Kurashina Y, Kaneko Y, Matsumoto T, Miyamoto T, Niki Y, Nakamura M, Onoe H. A novel fabrication process of up‐scalable microfiber‐shaped tendon‐like tissue with high cell density for uniformed macroscale assembly. Biotechnol Bioeng 2022; 119:1327-1336. [DOI: 10.1002/bit.28039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Keisuke Fukada
- Faculty of Science and Technology, Keio university 3‐14‐1 Hiyoshi, Kohoku‐ku Yokohama Kanagawa 223‐8522 Japan
| | - Koji Tachibana
- Faculty of Science and Technology, Keio university 3‐14‐1 Hiyoshi, Kohoku‐ku Yokohama Kanagawa 223‐8522 Japan
| | - Yuta Kurashina
- Faculty of Science and Technology, Keio university 3‐14‐1 Hiyoshi, Kohoku‐ku Yokohama Kanagawa 223‐8522 Japan
- School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta‐cho, Midori‐ku Yokohama Kanagawa 226‐8503 Japan
| | - Yosuke Kaneko
- School of Medicine, Keio University 35 Shinano‐machi, Shinjuku‐ku Tokyo 160‐8582 Japan
| | - Tatsuaki Matsumoto
- School of Medicine, Keio University 35 Shinano‐machi, Shinjuku‐ku Tokyo 160‐8582 Japan
| | - Takeshi Miyamoto
- School of Medicine, Keio University 35 Shinano‐machi, Shinjuku‐ku Tokyo 160‐8582 Japan
- Kumamoto University 1‐1‐1 Honjo, Chuo‐ku Kumamoto 860‐8556 Japan
| | - Yasuo Niki
- School of Medicine, Keio University 35 Shinano‐machi, Shinjuku‐ku Tokyo 160‐8582 Japan
| | - Masaya Nakamura
- School of Medicine, Keio University 35 Shinano‐machi, Shinjuku‐ku Tokyo 160‐8582 Japan
| | - Hiroaki Onoe
- Faculty of Science and Technology, Keio university 3‐14‐1 Hiyoshi, Kohoku‐ku Yokohama Kanagawa 223‐8522 Japan
| |
Collapse
|
11
|
Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv Healthc Mater 2021; 10:e2001305. [PMID: 33576158 PMCID: PMC8048718 DOI: 10.1002/adhm.202001305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Tendon and ligament injuries caused by trauma and degenerative diseases are frequent and affect diverse groups of the population. Such injuries reduce musculoskeletal performance, limit joint mobility, and lower people's comfort. Currently, various treatment strategies and surgical procedures are used to heal, repair, and restore the native tissue function. However, these strategies are inadequate and, in some cases, fail to re-establish the lost functionality. Tissue engineering and regenerative medicine approaches aim to overcome these disadvantages by stimulating the regeneration and formation of neotissues. Design and fabrication of artificial scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of tendons. In this review, the tendon and ligament structure, their physiology, and performance are presented. On the other hand, the requirements are focused for the development of an effective reconstruction device. The most common fiber-based scaffolding systems are also described for tendon and ligament tissue regeneration like strand fibers, woven, knitted, braided, and braid-twisted fibrous structures, as well as electrospun and wet-spun constructs, discussing critically the advantages and limitations of their utilization. Finally, the potential of multilayered systems as the most effective candidates for tendon and ligaments tissue engineering is pointed out.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
12
|
Abstract
Although the best-known examples of synthetic polymers are derived from carbon-based monomers, there exists another large and growing family of macromolecules based on the chemistry of phosphorus. These are the poly(organophosphazenes): polymers with a backbone of alternating phosphorus and nitrogen atoms and with two organic side groups attached to each phosphorus. The methods of synthesis of these polymers allow access to property combinations not found in all-organic counterparts, and this provides pathways to new materials that are important in biomedical research, energy generation and storage, aerospace materials, and numerous other specialized applications.
Collapse
Affiliation(s)
- Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Jaiswal D, Yousman L, Neary M, Fernschild E, Zolnoski B, Katebifar S, Rudraiah S, Mazzocca AD, Kumbar SG. Tendon tissue engineering: biomechanical considerations. Biomed Mater 2020; 15:052001. [DOI: 10.1088/1748-605x/ab852f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Enhancement of osteoblast cells osteogenic differentiation and bone regeneration by hydroxyapatite/phosphoester modified poly(amino acid). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110769. [PMID: 32279769 DOI: 10.1016/j.msec.2020.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/27/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Hydroxyapatite/poly(amino acid) (HA/PAA) has been used to treat a variety of long bone and vertebral bony defects, and a further biocompatibility improvement is a key for better application. Phosphoester (PE) contained materials are highly biocompatible but could hardly treat massive bone defects due to its fast-degradation-derived mechanical instability. To address the problems of the two materials, we have incorporated PE molecule into the main chain of PAA by chemical bonding. As a result, the compressive strength of HA/PAA with 1 wt% and 2.5 wt% PE maintained in the range of 80-150 MPa after soaking in PBS for 12 weeks, which could be attributed to the amplified hydrogen-bonding inside composites. Besides, the PE-containing HA/PAAs with increased hydrophilic function groups (O=P-O bonds and O=P-N), created a more favourable surface for cell adhesion. Meanwhile, compared with HA/PAA, the PE-containing HA/PAAs had a fast minerlization speed and promoted cell osteogenic differentiation. Furthermore, the in vivo study indicated that PE-containing HA/PAAs could facilitate bone formation (4 weeks), and form a complete bone bridging (12 weeks) in a rabbit cranial bone defect. In summary, the HA/PE-m-PAAs possessed good mechanical stability, improved cytocompatibility and osteoconductivity, so the composites have a great potential for massive bone defect treatment.
Collapse
|
15
|
Ramos DM, Abdulmalik S, Arul MR, Rudraiah S, Laurencin CT, Mazzocca AD, Kumbar SG. Insulin immobilized PCL-cellulose acetate micro-nanostructured fibrous scaffolds for tendon tissue engineering. POLYM ADVAN TECHNOL 2019; 30:1205-1215. [PMID: 30956516 PMCID: PMC6448803 DOI: 10.1002/pat.4553] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/28/2022]
Abstract
Use of growth factors as biochemical molecules to elicit cellular differentiation is a common strategy in tissue engineering. However, limitations associated with growth factors, such as short half-life, high effective physiological doses, and high costs, have prompted the search for growth factor alternatives, such as growth factor mimics and other proteins. This work explores the use of insulin protein as a biochemical factor to aid in tendon healing and differentiation of cells on a biomimetic electrospun micro-nanostructured scaffold. Dose response studies were conducted using human mesenchymal stem cells (MSCs) in basal media supplemented with varied insulin concentrations. A dose of 100-ng/mL insulin showed increased expression of tendon markers. Synthetic-natural blends of various ratios of polycaprolactone (PCL) and cellulose acetate (CA) were used to fabricate micro-nanofibers to balance physicochemical properties of the scaffolds in terms of mechanical strength, hydrophilicity, and insulin delivery. A 75:25 ratio of PCL:CA was found to be optimal in promoting cellular attachment and insulin immobilization. Insulin insulin deliveryimmobilized fiber matrices also showed increased expression of tendon phenotypic markers by MSCs similar to findings with insulin supplemented media, indicating preservation of insulin bioactivity. Insulin functionalized scaffolds may have potential applications in tendon healing and regeneration.
Collapse
Affiliation(s)
- Daisy M. Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Michael R. Arul
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, Connecticut
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Augustus D. Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
| | - Sangamesh G. Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
16
|
Ren Y, Li Z, Allcock HR. Molecular Engineering of Polyphosphazenes and SWNT Hybrids with Potential Applications as Electronic Materials. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Ren
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Physical Science and Technology, Shanghai Technical University, Shanghai 201210, P. R. China
| | - Zhongjing Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Chen Z, Zhang Z, Feng J, Guo Y, Yu Y, Cui J, Li H, Shang L. Influence of Mussel-Derived Bioactive BMP-2-Decorated PLA on MSC Behavior in Vitro and Verification with Osteogenicity at Ectopic Sites in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11961-11971. [PMID: 29561589 DOI: 10.1021/acsami.8b01547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Osteoinductive activity of the implant in bone healing and regeneration is still a challenging research topic. Therapeutic application of recombinant human bone morphogenetic protein-2 (BMP-2) is a promising approach to enhance osteogenesis. However, high dose and uncontrolled burst release of BMP-2 may introduce edema, bone overgrowth, cystlike bone formation, and inflammation. In this study, low-dose BMP-2 of 1 μg was used to design PLA-PD-BMP for functionalization of polylactic acid (PLA) implants via mussel-inspired polydopamine (PD) assist. For the first time, the binding property and efficiency of the PD coating with BMP-2 were directly demonstrated and analyzed using an antigen-antibody reaction. The obtained PLA-PD-BMP surface immobilized with this low BMP-2 dose can endow the implants with abilities of introducing strong stem cell adhesion and enhanced osteogenicity. Furthermore, in vivo osteoinduction of the PLA-PD-BMP-2 scaffolds was confirmed by a rat ectopic bone model, which is marked as the "gold standard" for the evidence of osteoinductive activity. The microcomputed tomography, Young's modulus, and histology analyses were also employed to demonstrate that PLA-PD-BMP grafted with 1 μg of BMP-2 can induce bone formation. Therefore, the method in this study can be used as a model system to immobilize other growth factors onto various different types of polymer substrates. The highly biomimetic mussel-derived strategy can therefore improve the clinical outcome of polymer-based medical implants in a facile, safe, and effective way.
Collapse
|
18
|
Lin J, Zhou W, Han S, Bunpetch V, Zhao K, Liu C, Yin Z, Ouyang H. Cell-material interactions in tendon tissue engineering. Acta Biomater 2018; 70:1-11. [PMID: 29355716 DOI: 10.1016/j.actbio.2018.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
The interplay between cells and materials is a fundamental topic in biomaterial-based tissue regeneration. One of the principles for biomaterial development in tendon regeneration is to stimulate tenogenic differentiation of stem cells. To this end, efforts have been made to optimize the physicochemical and bio-mechanical properties of biomaterials for tendon tissue engineering. However, recent progress indicated that innate immune cells, especially macrophages, can also respond to the material cues and undergo phenotypical changes, which will either facilitate or hinder tissue regeneration. This process has been, to some extent, neglected by traditional strategies and may partially explain the unsatisfactory outcomes of previous studies; thus, more researchers have turned their focus on developing and designing immunoregenerative biomaterials to enhance tendon regeneration. In this review, we will first summarize the effects of material cues on tenogenic differentiation and paracrine secretion of stem cells. A brief introduction will also be made on how material cues can be manipulated for the regeneration of tendon-to-bone interface. Then, we will discuss the characteristics and influences of macrophages on the repair process of tendon healing and how they respond to different materials cues. These principles may benefit the development of novel biomaterials provided with combinative bioactive cues to activate tenogenic differentiation of stem cells and pro-resolving macrophage phenotype. STATEMENT OF SIGNIFICANCE The progress achieved with the rapid development of biomaterial-based strategies for tendon regeneration has not yielded broad benefits to clinical patients. In addition to the interplay between stem cells and biomaterials, the innate immune response to biomaterials also plays a determinant role in tissue regeneration. Here, we propose that fine-tuning of stem cell behaviors and alternative activation of macrophages through material cues may lead to effective tendon/ligament regeneration. We first review the characteristics of key material cues that have been manipulated to promote tenogenic differentiation and paracrine secretion of stem cells in tendon regeneration. Then, we discuss the potentiality of corresponding material cues in activating macrophages toward a pro-resolving phenotype to promote tissue repair.
Collapse
Affiliation(s)
- Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Kun Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China
| | - Chaozhong Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; China Orthopedic Regenerative Medicine Group (CORMed), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
19
|
Narayanan G, Nair LS, Laurencin CT. Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomater Sci Eng 2018; 4:751-786. [PMID: 33418763 DOI: 10.1021/acsbiomaterials.7b00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rotator cuff tears often heal poorly, leading to re-tears after repair. This is in part attributed to the low proliferative ability of the resident cells (tendon fibroblasts and tendon-stem cells) upon injury to the rotator cuff tissue and the low vascularity of the tendon insertion. In addition, surgical outcomes of current techniques used in clinical settings are often suboptimal, leading to the formation of neo-tissue with poor biomechanics and structural characteristics, which results in re-tears. This has prompted interest in a new approach, which we term as "Regenerative Engineering", for regenerating rotator cuff tendons. In the Regenerative Engineering paradigm, roles played by stem cells, scaffolds, growth factors/small molecules, the use of local physical forces, and morphogenesis interplayed with clinical surgery techniques may synchronously act, leading to synergistic effects and resulting in successful tissue regeneration. In this regard, various cell sources such as tendon fibroblasts and adult tissue-derived stem cells have been isolated, characterized, and investigated for regenerating rotator cuff tendons. Likewise, numerous scaffolds with varying architecture, geometry, and mechanical characteristics of biologic and synthetic origin have been developed. Furthermore, these scaffolds have been also fabricated with biochemical cues (growth factors and small molecules), facilitating tissue regeneration. In this Review, various strategies to regenerate rotator cuff tendons using stem cells, advanced materials, and factors in the setting of physical forces under the Regenerative Engineering paradigm are described.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
20
|
Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One 2017; 12:e0174789. [PMID: 28369135 PMCID: PMC5378368 DOI: 10.1371/journal.pone.0174789] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Rotator cuff (RC) tears represent a large proportion of musculoskeletal injuries attended to at the clinic and thereby make RC repair surgeries one of the most widely performed musculoskeletal procedures. Despite the high incidence rate of RC tears, operative treatments have provided minimal functional gains and suffer from high re-tear rates. The hypocellular nature of tendon tissue poses a limited capacity for regeneration. In recent years, great strides have been made in the area of tendonogenesis and differentiation towards tendon cells due to a greater understanding of the tendon stem cell niche, development of advanced materials, improved scaffold fabrication techniques, and delineation of the phenotype development process. Though in vitro models for tendonogenesis have shown promising results, in vivo models have been less successful. The present work investigates structured matrices mimicking the tendon microenvironment as cell delivery vehicles in a rat RC tear model. RC injuries augmented with a matrix delivering rat mesenchymal stem cells (rMSCs) showed enhanced regeneration over suture repair alone or repair with augmentation, at 6 and 12-weeks post-surgery. The local delivery of rMSCs led to increased mechanical properties and improved tissue morphology. We hypothesize that the mesenchymal stem cells function to modulate the local immune and bioactivity environment through autocrine/paracrine and/or cell homing mechanisms. This study provides evidence for improved tendon healing with biomimetic matrices and delivered MSCs with the potential for translation to larger, clinical animal models. The enhanced regenerative healing response with stem cell delivering biomimetic matrices may represent a new treatment paradigm for massive RC tendon tears.
Collapse
|
21
|
Ogueri KS, Escobar Ivirico JL, Nair LS, Allcock HR, Laurencin CT. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017; 3:15-31. [PMID: 28596987 DOI: 10.1007/s40883-016-0022-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. LAY SUMMARY Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications.
Collapse
Affiliation(s)
- Kenneth S Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Lakshmi S Nair
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cato T Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
23
|
Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, Chen F. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Res Ther 2016; 7:70. [PMID: 27150539 PMCID: PMC4858869 DOI: 10.1186/s13287-016-0328-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. METHODS We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. RESULTS A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. CONCLUSIONS Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jing Wei
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jun Zhu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Wei Liu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jihong Cui
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Hongmin Li
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Fulin Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.
| |
Collapse
|
24
|
Dex S, Lin D, Shukunami C, Docheva D. Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene. Gene 2016; 587:1-17. [PMID: 27129941 DOI: 10.1016/j.gene.2016.04.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Tenomodulin (TNMD, Tnmd) is a gene highly expressed in tendon known to be important for tendon maturation with key implications for the residing tendon stem/progenitor cells as well as for the regulation of endothelial cell migration in chordae tendineae cordis in the heart and in experimental tumour models. This review aims at providing an encompassing overview of this gene and its protein. In addition, its known expression pattern as well as putative signalling pathways will be described. A chronological overview of the discovered functions of this gene in tendon and other tissues and cells is provided as well as its use as a tendon and ligament lineage marker is assessed in detail and discussed. Last, information about the possible connections between TNMD genomic mutations and mRNA expression to various diseases is delivered. Taken together this review offers a solid synopsis on the up-to-date information available about TNMD and aids at directing and focusing the future research to fully uncover the roles and implications of this interesting gene.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Dasheng Lin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany; Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
25
|
Polymeric Electrospinning for Musculoskeletal Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0013-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Abstract
The wide variety of accessible poly(organophosphazenes) is a consequence of the unusual macromolecular substitution approach to their synthesis.
Collapse
Affiliation(s)
- Harry R. Allcock
- The Pennsylvania State University
- Department of Chemistry
- University Park
- USA
| |
Collapse
|
27
|
Shelke NB, Lee P, Anderson M, Mistry N, Nagarale RK, Ma XM, Yu X, Kumbar SG. Neural tissue engineering: nanofiber-hydrogel based composite scaffolds. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3594] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Namdev B. Shelke
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
- Institute for Regenerative Engineering, UConn Health, Farmington; CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington; CT 06030 USA
| | - Paul Lee
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology; Hoboken NJ 07030 USA
| | - Matthew Anderson
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
- Institute for Regenerative Engineering, UConn Health, Farmington; CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington; CT 06030 USA
| | - Nikhil Mistry
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
| | - Rajaram K. Nagarale
- Reverse Osmosis Division; Central Salt and Marine Chemicals Research Institute; Bhavnagar Gujarat 364002 India
| | - Xin-Ming Ma
- Department of Neuroscience; University of Connecticut Health Center; Farmington CT 06030 USA
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology; Hoboken NJ 07030 USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
- Institute for Regenerative Engineering, UConn Health, Farmington; CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington; CT 06030 USA
- Department of Biomedical Engineering; University of Connecticut; Storrs CT 06269 USA
| |
Collapse
|
28
|
Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2014.12.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Pellowe AS, Gonzalez AL. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:5-22. [PMID: 26053111 DOI: 10.1002/wnan.1349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/26/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | |
Collapse
|
30
|
Abstract
Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades.
Collapse
Affiliation(s)
- Roshan James
- Institute for Regenerative Engineering, University of Connecticut
Health Center, Farmington, Connecticut 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and
Engineering Sciences, University of Connecticut Health Center, Connecticut 06030,
USA
- Department of Orthopaedic Surgery, University of Connecticut Health
Center, Farmington, Connecticut 06030, USA
| | - Cato T. Laurencin
- Institute for Regenerative Engineering, University of Connecticut
Health Center, Farmington, Connecticut 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and
Engineering Sciences, University of Connecticut Health Center, Connecticut 06030,
USA
- Department of Orthopaedic Surgery, University of Connecticut Health
Center, Farmington, Connecticut 06030, USA
- Connecticut Institute for Clinical and Translational Science,
Farmington, Connecticut 06030, USA
- Department of Chemical, Materials and Biomolecular Engineering,
University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
31
|
Younesi M, Islam A, Kishore V, Anderson JM, Akkus O. Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles. ADVANCED FUNCTIONAL MATERIALS 2014; 24:5762-5770. [PMID: 25750610 PMCID: PMC4349415 DOI: 10.1002/adfm.201400828] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A novel biofabrication modality, electrophoretic compaction with macromolecular alignment, was utilized to make collagen threads that mimic the native tendon's structure and mechanical properties. A device with kinematic electrodes was designed to fabricate collagen threads in continuous length. For the first time, a 3D-biotextile was woven purely from collagen. Mechanical properties and load-displacement behavior of the biotextile mimicked those of the native tendon while presenting a porosity of 80%. The open pore network facilitated cell seeding across the continuum of the bioscaffold. Mesenchymal stem cells (MSCs) seeded in the woven scaffold underwent tenogenic differentiation in the absence of growth factors and synthesized a matrix that was positive for tenomodulin, COMP and type I collagen. Up-regulation of tenomodulin, a tendon specific marker, was 11.6 ± 3.5 fold, COMP was up-regulated 16.7 ± 5.5 fold, and Col I was up-regulated 6.9 ± 2.7 fold greater on ELAC threads when compared to randomly oriented collagen gels. These results demonstrate that a bioscaffold woven by using collagen threads with densely compacted and anisotropically aligned substrate texture stimulates tenogenesis topographically, rendering the electrochemically aligned collagen as a promising candidate for functional repair of tendons and ligaments.
Collapse
Affiliation(s)
- Mousa Younesi
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Anowarul Islam
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Vipuil Kishore
- Department of Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901
| | - James M. Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
- Department of Macromolecular Sciences, Case Western Reserve University, Cleveland, OH 44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
- Corresponding Author: Professor Ozan Akkus, Departments of Mechanical and Aerospace Engineering, Biomedical Engineering and Orthopaedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, (Phone): 216-368-4175,
| |
Collapse
|
32
|
James R, Nagarale RK, Sachan VK, Badalucco C, Bhattacharya PK, Kumbar SG. Synthesis and characterization of electrically conducting polymers for regenerative engineering applications: sulfonated ionic membranes. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Roshan James
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical; Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Rajaram K. Nagarale
- Department of Chemical Engineering; Indian Institute of Technology Kanpur; UP 208016 India
| | - Vinay K. Sachan
- Department of Chemical Engineering; Indian Institute of Technology Kanpur; UP 208016 India
| | - Christopher Badalucco
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical; Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | | | - Sangamesh G. Kumbar
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical; Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopaedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Departments of Materials and Biomedical Engineering; University of Connecticut; CT 06269 USA
| |
Collapse
|
33
|
Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:761373. [PMID: 24883323 PMCID: PMC4022062 DOI: 10.1155/2014/761373] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/29/2014] [Indexed: 12/22/2022]
Abstract
Degradable biomaterials continue to play a major role in tissue engineering and regenerative medicine as well as for delivering therapeutic agents. Although the chemistry of polyphosphazenes has been studied extensively, a systematic review of their applications for a wide range of biomedical applications is lacking. Polyphosphazenes are synthesized through a relatively well-known two-step reaction scheme which involves the substitution of the initial linear precursor with a wide range of nucleophiles. The ease of substitution has led to the development of a broad class of materials that have been studied for numerous biomedical applications including as scaffold materials for tissue engineering and regenerative medicine. The objective of this review is to discuss the suitability of poly(amino acid ester)phosphazene biomaterials in regard to their unique stimuli responsive properties, tunable degradation rates and mechanical properties, as well as in vitro and in vivo biocompatibility. The application of these materials in areas such as tissue engineering and drug delivery is discussed systematically. Lastly, the utility of polyphosphazenes is further extended as they are being employed in blend materials for new applications and as another method of tailoring material properties.
Collapse
|
34
|
Nada AA, James R, Shelke NB, Harmon MD, Awad HM, Nagarale RK, Kumbar SG. A smart methodology to fabricate electrospun chitosan nanofiber matrices for regenerative engineering applications. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3292] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ahmed A. Nada
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Textile Research Division; National Research Center; Dokki Cairo 12622 Egypt
| | - Roshan James
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Namdev B. Shelke
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
| | - Matthew D. Harmon
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Department of Materials Science & Engineering and Biomedical Engineering; University of Connecticut; CT 06269 USA
| | - Hassan M. Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division; National Research Center; Dokki Cairo 12622 Egypt
| | - Rajaram K. Nagarale
- Department of Chemical Engineering; Indian Institute of Technology; Kanpur Uttar Pradesh 208016 India
| | - Sangamesh G. Kumbar
- Institute for Regenerative Engineering; University of Connecticut Health Center; CT 06030 USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences; CT 06030 USA
- Department of Orthopedic Surgery; University of Connecticut Health Center; CT 06030 USA
- Department of Materials Science & Engineering and Biomedical Engineering; University of Connecticut; CT 06269 USA
| |
Collapse
|
35
|
Jiang T, Deng M, James R, Nair LS, Laurencin CT. Micro- and nanofabrication of chitosan structures for regenerative engineering. Acta Biomater 2014; 10:1632-45. [PMID: 23851172 DOI: 10.1016/j.actbio.2013.07.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/31/2013] [Accepted: 07/01/2013] [Indexed: 11/24/2022]
Abstract
Repair and regeneration of human tissues and organs using biomaterials, cells and/or growth factors is the ultimate goal of tissue engineers. One of the grand challenges in this field is to closely mimic the structures and properties of native tissues. Regenerative engineering-the convergence of tissue engineering with advanced materials science, stem cell science, and developmental biology-represents the next valuable tool to overcome the challenges. This article reviews the recent progress in developing advanced chitosan structures using various fabrication techniques. These chitosan structures, together with stem cells and functional biomolecules, may provide a robust platform to gain insight into cell-biomaterial interactions and may function as excellent artificial extracellular matrices to regenerate complex human tissues and biological systems.
Collapse
|
36
|
Abstract
Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications.
Collapse
Affiliation(s)
- Brendan M. Watson
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Puppi D, Zhang X, Yang L, Chiellini F, Sun X, Chiellini E. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review. J Biomed Mater Res B Appl Biomater 2014; 102:1562-79. [PMID: 24678016 DOI: 10.1002/jbm.b.33144] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/29/2014] [Accepted: 03/06/2014] [Indexed: 01/04/2023]
Abstract
Nano/microfibrous polymeric constructs present various inherent advantages, such as highly porous architecture and high surface to volume ratio, making them attractive for tissue engineering purposes. Electrospinning is the most preferred technique for the fabrication of polymeric nanofibrous assemblies that can mimic the physical functions of native extracellular matrix greatly favoring cells attachment and thus influencing their morphology and activities. Different approaches have been developed to apply polymeric microfiber fabrication techniques (e.g. wet-spinning) for the obtainment of scaffolds with a three-dimensional network of micropores suitable for effective cells migration. Progress in additive manufacturing technology has led to the development of complex scaffold's shapes and microfibrous structures with a high degree of automation, good accuracy and reproducibility. Various loading methods, such as direct blending, coaxial electrospinning and microparticles incorporation, are enabling to develop customized strategies for the biofunctionalization of nano/microfibrous scaffolds with a tailored kinetics of release of different bioactive agents, ranging from small molecules, such as antibiotics, to protein drugs, such as growth factors, and even cells. Recent activities on the combination of different processing techniques and loading methods for the obtainment of biofunctionalized polymeric constructs with a complex multiscale structure open new possibilities for the development of biomimetic scaffolds endowed with a hierarchical architecture and a sophisticated release kinetics of different bioactive agents. This review is aimed at summarizing current advances in technologies and methods for manufacturing nano/microfibrous polymeric constructs suitable as tissue engineering scaffolds, and for their combination with different bioactive agents to promote tissue regeneration and therapeutic effects.
Collapse
Affiliation(s)
- Dario Puppi
- Department of Chemistry and Industrial Chemistry, Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), University of Pisa, 56010, San Piero a Grado (Pi), Italy
| | | | | | | | | | | |
Collapse
|
38
|
Cyclotriphosphazenes having stereogenic phosphorus atoms: Synthesis, characterization and their stereogenic properties. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Abstract
BACKGROUND Tissue-engineered human flexor tendons may be an option to aid in reconstruction of complex upper extremity injuries with significant tendon loss. The authors hypothesize that human adipose-derived stem cells remain viable following reseeding on human tendon scaffolds in vivo and aid in graft integration. METHODS Decellularized human flexor tendons harvested from fresh-frozen cadavers and reseeded with green fluorescent protein-labeled pooled human adipose-derived stem cells were examined with bioluminescent imaging and immunohistochemistry. Reseeded repaired tendons were compared biomechanically with unseeded controls following implantation in athymic rats at 2 and 4 weeks. The ratio of collagen I to collagen III at the repair site was examined using Sirius red staining. To confirm cell migration, reseeded and unseeded tendons were placed either in contact or with a 1-mm gap for 12 days. Green fluorescent protein signal was then detected. RESULTS Following reseeding, viable cells were visualized at 12 days in vitro and 4 weeks in vivo. Biomechanical testing revealed no significant difference in ultimate load to failure and 2-mm gap force. Histologic evaluation showed host cell invasion and proliferation of the repair sites. No increase in collagen III was noted in reseeded constructs. Cell migration was confirmed from reseeded constructs to unseeded tendon scaffolds with tendon contact. CONCLUSIONS Human adipose-derived stem cells reseeded onto decellularized allograft scaffolds are viable over 4 weeks in vivo. The movement of host cells into the scaffold and movement of adipose-derived stem cells along and into the scaffold suggests biointegration of the allograft.
Collapse
|
40
|
Wang T, Lin Z, Day RE, Gardiner B, Landao-Bassonga E, Rubenson J, Kirk TB, Smith DW, Lloyd DG, Hardisty G, Wang A, Zheng Q, Zheng MH. Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnol Bioeng 2013; 110:1495-507. [PMID: 23242991 DOI: 10.1002/bit.24809] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 12/16/2022]
Abstract
Identification of functional programmable mechanical stimulation (PMS) on tendon not only provides the insight of the tendon homeostasis under physical/pathological condition, but also guides a better engineering strategy for tendon regeneration. The aims of the study are to design a bioreactor system with PMS to mimic the in vivo loading conditions, and to define the impact of different cyclic tensile strain on tendon. Rabbit Achilles tendons were loaded in the bioreactor with/without cyclic tensile loading (0.25 Hz for 8 h/day, 0-9% for 6 days). Tendons without loading lost its structure integrity as evidenced by disorientated collagen fiber, increased type III collagen expression, and increased cell apoptosis. Tendons with 3% of cyclic tensile loading had moderate matrix deterioration and elevated expression levels of MMP-1, 3, and 12, whilst exceeded loading regime of 9% caused massive rupture of collagen bundle. However, 6% of cyclic tensile strain was able to maintain the structural integrity and cellular function. Our data indicated that an optimal PMS is required to maintain the tendon homeostasis and there is only a narrow range of tensile strain that can induce the anabolic action. The clinical impact of this study is that optimized eccentric training program is needed to achieve maximum beneficial effects on chronic tendinopathy management.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, School of Surgery, University of Western Australia, M Block, QE2 Medical Centre, Nedlands, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|