1
|
Chen W, Liu K, Liao X, Wu J, Chen L, Yang Z, Wang X, Liao Y, Fu G, Yang X, Wang Z, Qu G, Wang L, Zhou Y, Zhang Z, Yang C, Ni S, Zheng J, Tao TH, Zou D. Harmonizing Thickness and Permeability in Bone Tissue Engineering: A Novel Silk Fibroin Membrane Inspired by Spider Silk Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310697. [PMID: 38102951 DOI: 10.1002/adma.202310697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Guided bone regeneration gathers significant interest in the realm of bone tissue engineering; however, the interplay between membrane thickness and permeability continues to pose a challenge that can be addressed by the water-collecting mechanism of spider silk, where water droplets efficiently move from smooth filaments to rough conical nodules. Inspired by the natural design of spider silk, an innovative silk fibroin membrane is developed featuring directional fluid transportation via harmoniously integrating a smooth, dense layer with a rough, loose layer; conical microchannels are engineered in the smooth and compact layer. Consequently, double-layered membranes with cone-shaped microporous passageways (CSMP-DSF membrane) are designed for in situ bone repair. Through extensive in vitro testing, it is noted that the CSMP-DSF membrane guides liquid flow from the compact layer's surface to the loose layer, enabling rapid diffusion. Remarkably, the CSMP-DSF membrane demonstrates superior mechanical properties and resistance to bacterial adhesion. When applied in vivo, the CSMP-DSF membrane achieves results on par with the commercial Bio-Gide collagen membranes. This innovative integration of a cross-thickness wetting gradient structure offers a novel solution, harmonizing the often-conflicting requirements of material transport, mechanical strength, and barrier effectiveness, while also addressing issues related to tissue engineering scaffold perfusion.
Collapse
Affiliation(s)
- Wenze Chen
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoyu Liao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Jing Wu
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lu Chen
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zihan Yang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiping Wang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yinxiu Liao
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guiqiang Fu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xiaonian Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Zishuo Wang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guanlin Qu
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Li Wang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuqiong Zhou
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - ZhiYuan Zhang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chi Yang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jisi Zheng
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Duohong Zou
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| |
Collapse
|
2
|
Vibrational Study on the Structure, Bioactivity, and Silver Adsorption of Silk Fibroin Fibers Grafted with Methacrylonitrile. Molecules 2023; 28:molecules28062551. [PMID: 36985523 PMCID: PMC10051891 DOI: 10.3390/molecules28062551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Natural fibers have received increasing attention as starting materials for innovative applications in many research fields, from biomedicine to engineering. Bombyx mori silk fibroin has become a material of choice in the development of many biomedical devices. Grafting represents a good strategy to improve the material properties according to the desired function. In the present study, Bombyx mori silk fibroin fibers were grafted with methacrylonitrile (MAN) with different weight gains. The potential interest in biomedical applications of MAN functionalization relies on the presence of the nitrile group, which is an acceptor of H bonds and can bind metals. IR and Raman spectroscopy were used to characterize the grafted samples and the possible structural changes induced by grafting. Afterward, the same techniques were used to study the bioactivity (i.e., the calcium phosphate nucleation ability) of MAN-grafted silk fibroins after ageing in simulated body fluid (SBF) for possible application in bone tissue engineering, and their interaction with Ag+ ions, for the development of biomaterials with enhanced anti-microbial properties. MAN was found to efficiently polymerize on silk fibroin through polar amino acids (i.e., serine and tryptophan), inducing an enrichment in silk fibroin-ordered domains. IR spectroscopy allowed us to detect the nucleation of a thin calcium phosphate layer and the uptake of Ag+ ions through the nitrile group, which may foster the application of these grafted materials in biomedical applications.
Collapse
|
3
|
Wang L, Xu C, Meng K, Xia Y, Zhang Y, Lian J, Wang X, Zhao B. Biomimetic Hydroxyapatite Composite Coatings with a Variable Morphology Mediated by Silk Fibroin and Its Derived Peptides Enhance the Bioactivity on Titanium. ACS Biomater Sci Eng 2023; 9:165-181. [PMID: 36472618 DOI: 10.1021/acsbiomaterials.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various modifications performed on titanium alloy surfaces are shown to improve osteointegration and promote the long-term success of implants. In this work, a bioactive nanostructured hydroxyapatite (HA) composite coating with a variable morphology mediated by silk fibroin (SF) and its derived peptides (Cs) was prepared. Numerous experimental techniques were used to characterize the constructed coatings in terms of morphology, roughness, hydrophilicity, protein adsorption, in vitro biomineralization, and adhesion strength. The mixed protein layer with different contents of SF and Cs exhibited different secondary structures at different temperatures, effectively mediating the electrodeposited HA layer with different characteristics and finally forming proteins/HA composite coatings with versatile morphologies. The addition of Cs significantly improved the hydrophilicity and protein adsorption capacity of the composite coatings, while the electrodeposition of the HA layer effectively enhanced the adhesion between the composite coatings and Ti surface. In the in vitro mineralization experiments, all the composite coatings exhibited excellent apatite formation ability. Moreover, the composite coatings showed excellent cell growth and proliferation activity. Osteogenic induction experiments revealed that the coating could significantly increase the expression of specific osteogenic markers, including ALP, Col-I, Runx-2, and OCN. Overall, the proposed modification of the Ti implant surface by protein/HA coatings had good potential for clinical applications in enhancing bone induction and osteogenic activity of implants.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Kejing Meng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yufang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Jing Lian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Xing Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| |
Collapse
|
4
|
Bottagisio M, Palombella S, Lopa S, Sangalli F, Savadori P, Biagiotti M, Sideratou Z, Tsiourvas D, Lovati AB. Vancomycin-nanofunctionalized peptide-enriched silk fibroin to prevent methicillin-resistant Staphylococcus epidermidis-induced femoral nonunions in rats. Front Cell Infect Microbiol 2023; 12:1056912. [PMID: 36683682 PMCID: PMC9851397 DOI: 10.3389/fcimb.2022.1056912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Implant-related infections and infected fractures are significant burdens in orthopedics. Staphylococcus epidermidis is one of the main causes of bone infections related to biofilm formation upon implants. Current antibiotic prophylaxis/therapy is often inadequate to prevent biofilm formation and results in antibiotic resistance. The development of bioactive materials combining antimicrobial and osteoconductive properties offers great potential for the eradication of microorganisms and for the enhancement of bone deposition in the presence of infections. The purpose of this study is to prevent the development of methicillin-resistant S. epidermidis (MRSE)-infected nonunion in a rat model. Methods To this end, a recently developed in our laboratories bioactive material consisting of antibiotic-loaded nanoparticles based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that are integrated into peptide-enriched silk fibroin sponges with osteoconductive properties (AFN-PSF) was employed, whose biocompatibility and microbiological tests provided proof of its potential for the treatment of both orthopedic and dental infections. In particular, non-critical femoral fractures fixed with plates and screws were performed in Wistar rats, which were then randomly divided into three groups: 1) the sham control (no infection, no treatment); 2) the control group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating non-drug-loaded functionalized nanoparticles (PSF); 3) the treated group, infected with MRSE and treated with peptide-enriched silk fibroin sponges incorporating vancomycin-loaded functionalized nanoparticles (AFN-PSF). After 8 weeks, bone healing and osteomyelitis were clinically assessed and evaluated by micro-CT, microbiological and histological analyses. Results The sham group showed no signs of infection and complete bone healing. The PSF group failed to repair the infected fracture, displaying 75% of altered bone healing and severe signs of osteomyelitis. The AFN-PSF treated group reached 70% of fracture healing in the absence of signs of osteomyelitis, such as abscesses in the cortical and intraosseous compartments and bone necrosis with sequestra. Discussion AFN-PSF sponges have proven effective in preventing the development of infected nonunion in vivo. The proposed nanotechnology for local administration of antibiotics can have a significant impact on patient health in the case of orthopedic infections.
Collapse
Affiliation(s)
- Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Silvia Palombella
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Fabio Sangalli
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Laboratory of Renal Biophysics, Department of Biomedical Engineering, Bergamo, Italy
| | - Paolo Savadori
- IRCCS Istituto Ortopedico Galeazzi, Department of Endodontics, Milan, Italy
| | | | - Zili Sideratou
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Aghia Paraskevi, Greece
| | - Dimitris Tsiourvas
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Aghia Paraskevi, Greece
| | - Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| |
Collapse
|
5
|
Biagiotti M, Bassani GA, Chiarini A, Vincoli VT, Dal Prà I, Cosentino C, Alessandrino A, Taddei P, Freddi G. Electrospun Silk Fibroin Scaffolds for Tissue Regeneration: Chemical, Structural, and Toxicological Implications of the Formic Acid-Silk Fibroin Interaction. Front Bioeng Biotechnol 2022; 10:833157. [PMID: 35155396 PMCID: PMC8829063 DOI: 10.3389/fbioe.2022.833157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
The dissolution of Bombyx mori silk fibroin (SF) films in formic acid (FA) for the preparation of electrospinning dopes is widely exploited to produce electrospun SF scaffolds. The SILKBridge® nerve conduit is an example of medical device having in its wall structure an electrospun component produced from an FA spinning dope. Though highly volatile, residual FA remains trapped into the bulk of the SF nanofibers. The purpose of this work is to investigate the type and strength of the interaction between FA and SF in electrospun mats, to quantify its amount and to evaluate its possible toxicological impact on human health. The presence of residual FA in SF mats was detected by FTIR and Raman spectroscopy (new carbonyl peak at about 1,725 cm−1) and by solid state NMR, which revealed a new carbonyl signal at about 164.3 ppm, attributed to FA by isotopic 13C substitution. Changes occurred also in the spectral ranges of hydroxylated amino acids (Ser and Thr), demonstrating that FA interacted with SF by forming formyl esters. The total amount of FA was determined by HS-GC/MS analysis and accounted for 247 ± 20 μmol/g. The greatest part was present as formyl ester, a small part (about 3%) as free FA. Approximately 17% of the 1,500 μmol/g of hydroxy amino acids (Ser and Thr) theoretically available were involved in the formation of formyl esters. Treatment with alkali (Na2CO3) succeeded to remove the greatest part of FA, but not all. Alkali-treated electrospun SF mats underwent morphological, physical, and mechanical changes. The average diameter of the fibers increased from about 440 nm to about 480 nm, the mat shrunk, became stiffer (the modulus increased from about 5.5 MPa to about 7 MPa), and lost elasticity (the strain decreased from about 1 mm/mm to about 0.8 mm/mm). Biocompatibility studies with human adult dermal fibroblasts did not show significant difference in cell proliferation (313 ± 18 and 309 ± 23 cells/mm2 for untreated and alkali-treated SF mat, respectively) and metabolic activity. An in-depth evaluation of the possible toxicological impact of residual FA was made using the SILKBridge® nerve conduit as case study, following the provisions of the ISO 10993-1 standard. The Potential Patient Daily Intake, calculated from the total amount of FA determined by HS-GC/MS, was 2.4 mg/day and the Tolerable Exposure level was set to 35.4 mg/day. This allowed to obtain a value of the Margin of Safety of 15, indicating that the amount of FA left on SF mats after electrospinning does not raise concerns for human health.
Collapse
Affiliation(s)
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Human Histology and Embryology Unit, Medical School, University of Verona, Verona, Italy
| | | | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Human Histology and Embryology Unit, Medical School, University of Verona, Verona, Italy
| | | | | | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuliano Freddi
- Silk Biomaterials S.r.l, Lomazzo, Italy
- *Correspondence: Giuliano Freddi,
| |
Collapse
|
6
|
Di Foggia M, Tsukada M, Taddei P. Vibrational Study on Structure and Bioactivity of Protein Fibers Grafted with Phosphorylated Methacrylates. Molecules 2021; 26:6487. [PMID: 34770891 PMCID: PMC8587459 DOI: 10.3390/molecules26216487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
In the last decades, silk fibroin and wool keratin have been considered functional materials for biomedical applications. In this study, fabrics containing silk fibers from Bombyx mori and Tussah silk fibers from Antheraea pernyi, as well as wool keratin fabrics, were grafted with phosmer CL and phosmer M (commercial names, i.e., methacrylate monomers containing phosphate groups in the molecular side chain) with different weight gains. Both phosmers were recently proposed as flame retarding agents, and their chemical composition suggested a possible application in bone tissue engineering. IR and Raman spectroscopy were used to disclose the possible structural changes induced by grafting and identify the most reactive amino acids towards the phosmers. The same techniques were used to investigate the nucleation of a calcium phosphate phase on the surface of the samples (i.e., bioactivity) after ageing in simulated body fluid (SBF). The phosmers were found to polymerize onto the biopolymers efficiently, and tyrosine and serine underwent phosphorylation (monitored through the strengthening of the Raman band at 1600 cm-1 and the weakening of the Raman band at 1400 cm-1, respectively). In grafted wool keratin, cysteic acid and other oxidation products of disulphide bridges were detected together with sulphated residues. Only slight conformational changes were observed upon grafting, generally towards an enrichment in ordered domains, suggesting that the amorphous regions were more prone to react (and, sometimes, degrade). All samples were shown to be bioactive, with a weight gain of up to 8%. The most bioactive samples contained the highest phosmers amounts, i.e., the highest amounts of phosphate nucleating sites. The sulphate/sulphonate groups present in grafted wool samples appeared to increase bioactivity, as shown by the five-fold increase of the IR phosphate band at 1040 cm-1.
Collapse
Affiliation(s)
- Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Belmeloro 8/2, 40126 Bologna, Italy;
| | - Masuhiro Tsukada
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan;
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Belmeloro 8/2, 40126 Bologna, Italy;
| |
Collapse
|
7
|
Lovati AB, Lopa S, Bottagisio M, Talò G, Canciani E, Dellavia C, Alessandrino A, Biagiotti M, Freddi G, Segatti F, Moretti M. Peptide-Enriched Silk Fibroin Sponge and Trabecular Titanium Composites to Enhance Bone Ingrowth of Prosthetic Implants in an Ovine Model of Bone Gaps. Front Bioeng Biotechnol 2020; 8:563203. [PMID: 33195126 PMCID: PMC7604365 DOI: 10.3389/fbioe.2020.563203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis frequently requires arthroplasty. Cementless implants are widely used in clinics to replace damaged cartilage or missing bone tissue. In cementless arthroplasty, the risk of aseptic loosening strictly depends on implant stability and bone–implant interface, which are fundamental to guarantee the long-term success of the implant. Ameliorating the features of prosthetic materials, including their porosity and/or geometry, and identifying osteoconductive and/or osteoinductive coatings of implant surfaces are the main strategies to enhance the bone-implant contact surface area. Herein, the development of a novel composite consisting in the association of macro-porous trabecular titanium with silk fibroin (SF) sponges enriched with anionic fibroin-derived polypeptides is described. This composite is applied to improve early bone ingrowth into the implant mesh in a sheep model of bone defects. The composite enables to nucleate carbonated hydroxyapatite and accelerates the osteoblastic differentiation of resident cells, inducing an outward bone growth, a feature that can be particularly relevant when applying these implants in the case of poor osseointegration. Moreover, the osteoconductive properties of peptide-enriched SF sponges support an inward bone deposition from the native bone towards the implants. This technology can be exploited to improve the biological functionality of various prosthetic materials in terms of early bone fixation and prevention of aseptic loosening in prosthetic surgery.
Collapse
Affiliation(s)
- Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Elena Canciani
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Claudia Dellavia
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | | | | | | | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
8
|
Chen P, Li L, Dong L, Wang S, Huang Z, Qian Y, Wang C, Liu W, Yang L. Gradient Biomineralized Silk Fibroin Nanofibrous Scaffold with Osteochondral Inductivity for Integration of Tendon to Bone. ACS Biomater Sci Eng 2020; 7:841-851. [PMID: 33715375 DOI: 10.1021/acsbiomaterials.9b01683] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enthesis injury repair remains a huge challenge because of the unique biomolecular composition, microstructure, and mechanics in the interfacial region. Surgical reconstruction often creates new bone-scaffold interfaces with mismatched properties, resulting in poor osseointegration. To mimic the natural interface tissue structures and properties, we fabricated a nanofibrous scaffold with gradient mineral coating based on 10 × simulated body fluid (SBF) and silk fibroin (SF). We then characterized the physicochemical properties of the scaffold and evaluated its biological functions both in vitro and in vivo. The results showed that different areas of SF nanofibrous scaffold had varying levels of mineralization with disparate mechanical properties and had different effects on bone marrow mesenchymal stem cell growth and differentiation. Furthermore, the gradient scaffolds exhibited an enhancement of integration in the tendon-to-bone interface with a higher ultimate load and more fibrocartilage-like tissue formation. These findings demonstrate that the silk-based nanofibrous scaffold with gradient mineral coating can regulate the formation of interfacial tissue and has the potential to be applied in interface tissue engineering.
Collapse
Affiliation(s)
- Peixing Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Lili Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Sixiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Zhi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yuna Qian
- Wenzhou Institute of Biomaterials & Engineering, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Chunli Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Poly(d,l-Lactic acid) Composite Foams Containing Phosphate Glass Particles Produced via Solid-State Foaming Using CO 2 for Bone Tissue Engineering Applications. Polymers (Basel) 2020; 12:polym12010231. [PMID: 31963457 PMCID: PMC7023552 DOI: 10.3390/polym12010231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
This study reports on the production and characterization of highly porous (up to 91%) composite foams for potential bone tissue engineering (BTE) applications. A calcium phosphate-based glass particulate (PGP) filler of the formulation 50P2O5-40CaO-10TiO2 mol.%, was incorporated into biodegradable poly(d,l-lactic acid) (PDLLA) at 5, 10, 20, and 30 vol.%. The composites were fabricated by melt compounding (extrusion) and compression molding, and converted into porous structures through solid-state foaming (SSF) using high-pressure gaseous carbon dioxide. The morphological and mechanical properties of neat PDLLA and composites in both nonporous and porous states were examined. Scanning electron microscopy micrographs showed that the PGPs were well dispersed throughout the matrices. The highly porous composite systems exhibited improved compressive strength and Young’s modulus (up to >2-fold) and well-interconnected macropores (up to ~78% open pores at 30 vol.% PGP) compared to those of the neat PDLLA foam. The pore size of the composite foams decreased with increasing PGPs content from an average of 920 µm for neat PDLLA foam to 190 µm for PDLLA-30PGP. Furthermore, the experimental data was in line with the Gibson and Ashby model, and effective microstructural changes were confirmed to occur upon 30 vol.% PGP incorporation. Interestingly, the SSF technique allowed for a high incorporation of bioactive particles (up to 30 vol.%—equivalent to ~46 wt.%) while maintaining the morphological and mechanical criteria required for BTE scaffolds. Based on the results, the SSF technique can offer more advantages and flexibility for designing composite foams with tunable characteristics compared to other methods used for the fabrication of BTE scaffolds.
Collapse
|