1
|
Jorgensen C. Chapitre 12. Impact sociétal et éthique de la thérapie cellulaire et des biotechnologies. JOURNAL INTERNATIONAL DE BIOETHIQUE ET D'ETHIQUE DES SCIENCES 2023; 34:165-171. [PMID: 37684204 DOI: 10.3917/jibes.342.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Cell therapy is becoming established in many fields, including oncology with CAR-Ts or in regenerative medicine for cardiovascular diseases, diabetes or musculoskeletal disorders with mesenchymal stromal cells. These therapeutic cells are called advanced therapy medicinal products (ATMPs) and include all processes including cells manipulated to obtain reprogramming (iPS), to induce gene expression or by genome editing to modify the expression of a gene. The development of new biomaterial supports that can be 3D printed and take the desired shape of the target tissue before being colonised by the cellular elements necessary for their biological functions and replace the failing organ. All of these new technologies are driving innovation and the development of tomorrow’s bio-medicines. These new biotherapies will profoundly modify patient care in all areas, changing medical practices but with a considerable societal impact. Thus, the development and clinical research on cellular biotherapies are essential health issues but with a major ethical, societal and economic impact.
Collapse
|
2
|
Kadlečková M, Skopalová K, Ptošková B, Wrzecionko E, Daďová E, Kocourková K, Mráček A, Musilová L, Smolka P, Humpolíček P, Minařík A. Hierarchically Structured Surfaces Prepared by Phase Separation: Tissue Mimicking Culture Substrate. Int J Mol Sci 2022; 23:ijms23052541. [PMID: 35269688 PMCID: PMC8910751 DOI: 10.3390/ijms23052541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The pseudo 3D hierarchical structure mimicking in vivo microenvironment was prepared by phase separation on tissue culture plastic. For surface treatment, time-sequenced dosing of the solvent mixture with various concentrations of polymer component was used. The experiments showed that hierarchically structured surfaces with macro, meso and micro pores can be prepared with multi-step phase separation processes. Changes in polystyrene surface topography were characterized by atomic force microscopy, scanning electron microscopy and contact profilometry. The cell proliferation and changes in cell morphology were tested on the prepared structured surfaces. Four types of cell lines were used for the determination of impact of the 3D architecture on the cell behavior, namely the mouse embryonic fibroblast, human lung carcinoma, primary human keratinocyte and mouse embryonic stem cells. The increase of proliferation of embryonic stem cells and mouse fibroblasts was the most remarkable. Moreover, the embryonic stem cells express different morphology when cultured on the structured surface. The acquired findings expand the current state of knowledge in the field of cell behavior on structured surfaces and bring new technological procedures leading to their preparation without the use of problematic temporary templates or additives.
Collapse
Affiliation(s)
- Markéta Kadlečková
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Kateřina Skopalová
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Barbora Ptošková
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
| | - Erik Wrzecionko
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Eliška Daďová
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Karolína Kocourková
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Aleš Mráček
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Lenka Musilová
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Petr Smolka
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
| | - Petr Humpolíček
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
- Correspondence: (P.H.); (A.M.)
| | - Antonín Minařík
- Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (M.K.); (B.P.); (E.W.); (K.K.); (A.M.); (L.M.); (P.S.)
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; (K.S.); (E.D.)
- Correspondence: (P.H.); (A.M.)
| |
Collapse
|
3
|
Derivation and Characterization of EGFP-Labeled Rabbit Limbal Mesenchymal Stem Cells and Their Potential for Research in Regenerative Ophthalmology. Biomedicines 2021; 9:biomedicines9091134. [PMID: 34572321 PMCID: PMC8465718 DOI: 10.3390/biomedicines9091134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
The development of cell-based approaches to the treatment of various cornea pathologies, including limbal stem cell deficiency (LSCD), is an area of current interest in regenerative biomedicine. In this context, the shortage of donor material is urgent, and limbal mesenchymal stem cells (L-MSCs) may become a promising cell source for the development of these novel approaches, being established mainly within the rabbit model. In this study, we obtained and characterized rabbit L-MSCs and modified them with lentiviral transduction to express the green fluorescent protein EGFP (L-MSCs-EGFP). L-MSCs and L-MSCs-EGFP express not only stem cell markers specific for mesenchymal stem cells but also ABCG2, ABCB5, ALDH3A1, PAX6, and p63a specific for limbal epithelial stem cells (LESCs), as well as various cytokeratins (3/12, 15, 19). L-MSCs-EGFP have been proven to differentiate into adipogenic, osteogenic, and chondrogenic directions, as well as to transdifferentiate into epithelial cells. The possibility of using L-MSCs-EGFP to study the biocompatibility of various scaffolds developed to treat corneal pathologies was demonstrated. L-MSCs-EGFP may become a useful tool for studying regenerative processes occurring during the treatment of various corneal pathologies, including LSCD, with the use of cell-based technologies.
Collapse
|
4
|
Functional Polylactide Blend Films for Controlling Mesenchymal Stem Cell Behaviour. Polymers (Basel) 2020; 12:polym12091969. [PMID: 32872657 PMCID: PMC7563229 DOI: 10.3390/polym12091969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Polymer blending is a suitable physical modification method to create novel properties of different polymers. Blending polylactic acid (PLA) and polyethylene glycol (PEG) produces materials with a wide range of properties. This study was the first to investigate the effect of different isomeric forms of PLA and PEG with terminal amino groups to obtain biocompatible films for human mesenchymal stem cell cultivation. It has been shown by scanning electron microscopy that the surface topology changes to the greatest extent when using films obtained on the basis of poly(d,l-lactide) and PEG with high molecular weights (15,000 g/mol). In order to obtain thin films and rapid evaporation of the solvent, PEG is mixed with PLA and does not form a separate phase and is not further washed out during the incubation in water. The presence of PEG with terminal hydroxyl and amino groups in blend films after incubation in water was proven using Fourier transform infrared (FTIR) spectroscopy. Results of fluorescence microscopy demonstrated that blend films formed on PLA and polyethylene glycol diamine (PEG-NH2) are more suitable for cell spreading and focal contact formation compared to cells cultured on the surface of pure PLA films or films made from PLA and PEG.
Collapse
|