1
|
Nosrati H, Nosrati M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel) 2023; 8:442. [PMID: 37754193 PMCID: PMC10526210 DOI: 10.3390/biomimetics8050442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The field of regenerative medicine is constantly advancing and aims to repair, regenerate, or substitute impaired or unhealthy tissues and organs using cutting-edge approaches such as stem cell-based therapies, gene therapy, and tissue engineering. Nevertheless, incorporating artificial intelligence (AI) technologies has opened new doors for research in this field. AI refers to the ability of machines to perform tasks that typically require human intelligence in ways such as learning the patterns in the data and applying that to the new data without being explicitly programmed. AI has the potential to improve and accelerate various aspects of regenerative medicine research and development, particularly, although not exclusively, when complex patterns are involved. This review paper provides an overview of AI in the context of regenerative medicine, discusses its potential applications with a focus on personalized medicine, and highlights the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Hamed Nosrati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Masoud Nosrati
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Norouzi Z, Abdouss M. Electrospun nanofibers using β-cyclodextrin grafted chitosan macromolecules loaded with indomethacin as an innovative drug delivery system. Int J Biol Macromol 2023; 233:123518. [PMID: 36773879 DOI: 10.1016/j.ijbiomac.2023.123518] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
Electrospun nanofibers, as an innovative drug delivery system, provide selective, effective, and safe drug release. The present study aimed to fabricate nanofibers based on β-cyclodextrin grafted chitosan (β-CD-g-CS) macromolecules with incorporated drug via the blend electrospinning technique. The grafting of β-CD onto chitosan (CS) was confirmed by FT-IR, 1H NMR, TGA, XRD, and EDX analysis. Indomethacin was encapsulated in the β-CD-g-CS matrix as blend nanofibers using electrospinning in presence of polyvinyl alcohol (PVA). The SEM images revealed nanofibers with diameters at the nanoscale. The unique features of β-CD-g-CS/PVA as drug delivery system were investigated using indomethacin as a model drug molecule. Controlled release of indomethacin from nanofibers was studied in PBS solution by measuring the absorbance by UV-Vis spectrophotometer. The drug release profile exhibited that the rate of drug release can be tailored by polymer type and changing the drug/polymer ratio. The physicomechanical properties of the developed nanofibers were analyzed by tensile strength and water contact angle. The results demonstrated that β-CD-g-CS revealed enhanced wettability as well as favorable physicomechanical properties. In addition, the growth rate of the L929 cells on the CS and β-CD-g-CS nanofibers was not significantly inhibited and even improved cell proliferation. These findings indicated that β-CD-g-CS nanofibers could be appropriate as a smart drug delivery system for sustained release of indomethacin as an anti-inflammatory medicine in the wound healing and tissue engineering approaches in orthopedic applications.
Collapse
Affiliation(s)
- Zahra Norouzi
- Department of Chemistry, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran..
| |
Collapse
|
3
|
Rather HA, Varghese JF, Dhimmar B, Yadav UC, Vasita R. Polycaprolactone-collagen nanofibers loaded with dexamethasone and simvastatin as an osteoinductive and immunocompatible scaffold for bone regeneration applications. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100064. [PMID: 36824372 PMCID: PMC9934467 DOI: 10.1016/j.bbiosy.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Physiological inflammation has been shown to promote bone regeneration; however, prolonged inflammation impedes the osteogenesis and bone repair process. To overcome the latter we aimed to develop a dual drug delivering nanofibrous scaffold to promote osteogenic differentiation of mesenchymal stromal cells (MSCs) and modulate the pro-inflammatory response of macrophages. The polycaprolactone (PCL)-collagen nanofibrous delivery system incorporating dexamethasone and simvastatin was fabricated by electrospinning process. The morphological analysis and mRNA, as well as protein expression of proinflammatory and anti-inflammatory cytokines in human monocytes (U937 cells), demonstrated the immunocompatibility effect of dual drug-releasing nanofibrous scaffolds. Nitric oxide estimation also demonstrated the anti-inflammatory effect of dual drug releasing scaffolds. The scaffolds demonstrated the osteogenic differentiation of adipose-derived MSCs by enhancing the alkaline phosphatase (ALP) activity and mineral deposition after 17 days of cell culture. The increased expression of Runt-related transcription factor-2 (RUNX-2) and osteocalcin at mRNA and protein levels supported the osteogenic potential of dual drug-loaded fibrous scaffolds. Hence, the results indicate that our fabricated nanofibrous scaffolds exhibit immunomodulatory properties and could be employed for bone regeneration applications after further in-vivo validation.
Collapse
Affiliation(s)
- Hilal Ahmad Rather
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | | | - Bindiya Dhimmar
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Umesh C.S. Yadav
- Metabolic Disorders and Inflammatory pathologies Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India,Corresponding author.
| |
Collapse
|
4
|
Golshayan NS, Karbasi S, Masaeli E, Bahremandi-Toloue E, Nasr-Esfahani MH, Rafienia M. Evaluation of the effects of glucosamine sulfate on poly(3- hydroxybutyrate) -chitosan/carbon nanotubes electrospun scaffold for cartilage tissue engineering applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2046086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Negin Sadat Golshayan
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elahe Bahremandi-Toloue
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Rafienia
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Ottonelli I, Caraffi R, Tosi G, Vandelli MA, Duskey JT, Ruozi B. Tunneling Nanotubes: A New Target for Nanomedicine? Int J Mol Sci 2022; 23:ijms23042237. [PMID: 35216348 PMCID: PMC8878036 DOI: 10.3390/ijms23042237] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tunneling nanotubes (TNTs), discovered in 2004, are thin, long protrusions between cells utilized for intercellular transfer and communication. These newly discovered structures have been demonstrated to play a crucial role in homeostasis, but also in the spreading of diseases, infections, and metastases. Gaining much interest in the medical research field, TNTs have been shown to transport nanomedicines (NMeds) between cells. NMeds have been studied thanks to their advantageous features in terms of reduced toxicity of drugs, enhanced solubility, protection of the payload, prolonged release, and more interestingly, cell-targeted delivery. Nevertheless, their transfer between cells via TNTs makes their true fate unknown. If better understood, TNTs could help control NMed delivery. In fact, TNTs can represent the possibility both to improve the biodistribution of NMeds throughout a diseased tissue by increasing their formation, or to minimize their formation to block the transfer of dangerous material. To date, few studies have investigated the interaction between NMeds and TNTs. In this work, we will explain what TNTs are and how they form and then review what has been published regarding their potential use in nanomedicine research. We will highlight possible future approaches to better exploit TNT intercellular communication in the field of nanomedicine.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
- Correspondence:
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| |
Collapse
|
6
|
Rabie AM, Ali ASM, Al-Zeer MA, Barhoum A, EL-Hallouty S, Shousha WG, Berg J, Kurreck J, Khalil ASG. Spontaneous Formation of 3D Breast Cancer Tissues on Electrospun Chitosan/Poly(ethylene oxide) Nanofibrous Scaffolds. ACS OMEGA 2022; 7:2114-2126. [PMID: 35071900 PMCID: PMC8771982 DOI: 10.1021/acsomega.1c05646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/22/2021] [Indexed: 05/06/2023]
Abstract
Three-dimensional (3D) tissue culture has attracted a great deal of attention as a result of the need to replace the conventional two-dimensional cell cultures with more meaningful methods, especially for understanding the sophisticated nature of native tumor microenvironments. However, most techniques for 3D tissue culture are laborious, expensive, and limited to spheroid formation. In this study, a low-cost and highly effective nanofibrous scaffold is presented for spontaneous formation of reproducible 3D breast cancer microtissues. Experimentally, aligned and non-aligned chitosan/poly(ethylene oxide) nanofibrous scaffolds were prepared at one of two chitosan concentrations (2 and 4 wt %) and various electrospinning parameters. The resulting fabricated scaffolds (C2P1 and C4P1) were structurally and morphologically characterized, as well as analyzed in silico. The obtained data suggest that the fiber diameter, surface roughness, and scaffold wettability are tunable and can be influenced based on the chitosan concentration, electrospinning conditions, and alignment mode. To test the usefulness of the fabricated scaffolds for 3D cell culture, a breast cancer cell line (MCF-7) was cultured on their surfaces and evaluated morphologically and biochemically. The obtained data showed a higher proliferation rate for cells grown on scaffolds compared to cells grown on two-dimensional adherent plates (tissue culture plate). The MTT assay revealed that the rate of cell proliferation on nanofibrous scaffolds is statistically significantly higher compared to tissue culture plate (P ≤ 0.001) after 14 days of culture. The formation of spheroids within the first few days of culture shows that the scaffolds effectively support 3D tissue culture from the outset of the experiment. Furthermore, 3D breast cancer tissues were spontaneously formed within 10 days of culture on aligned and non-aligned nanofibrous scaffolds, which suggests that the scaffolds imitate the in vivo extracellular matrix in the tumor microenvironment. Detailed mechanisms for the spontaneous formation of the 3D microtissues have been proposed. Our results suggest that scaffold surface topography significantly influences tissue formation and behavior of the cells.
Collapse
Affiliation(s)
- Amna M.
I. Rabie
- Environmental
and Smart Technology Group (ESTG), Faculty of Science, Fayoum University, 63514 Fayoum, Egypt
- Chemistry
Department, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Ahmed S. M. Ali
- Department
of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- Nanotechnology
Research Center (NTRC), The British University
in Egypt (BUE), El-Sherouk City, 11837 Cairo, Egypt
| | - Munir A. Al-Zeer
- Department
of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Ahmed Barhoum
- Chemistry
Department, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Salwa EL-Hallouty
- Department
of Medicinal Drugs, National Research Center, 12622 Giza, Egypt
| | - Wafaa G. Shousha
- Chemistry
Department, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Johanna Berg
- Department
of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Jens Kurreck
- Department
of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Ahmed S. G. Khalil
- Environmental
and Smart Technology Group (ESTG), Faculty of Science, Fayoum University, 63514 Fayoum, Egypt
- Materials
Science & Engineering Department, School of Innovative Design
Engineering, Egypt-Japan University of Science
and Technology (E-JUST), 21934 Alexandria, Egypt
| |
Collapse
|
7
|
Shahrousvand M, Haddadi-Asl V, Shahrousvand M. Step-by-step design of poly (ε-caprolactone) /chitosan/Melilotus officinalis extract electrospun nanofibers for wound dressing applications. Int J Biol Macromol 2021; 180:36-50. [PMID: 33727184 DOI: 10.1016/j.ijbiomac.2021.03.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Composition of polymers and choosing the type of solvents in electrospinning systems is of great importance to achieve a mat with optimal properties. In this work, with emphasizing the influence of a novel solvent system, an electrospun wound dressing was designed in four steps. Firstly, to study the effect of polymer-solvent interactions and electrospinning distance, a constant amount of polycaprolactone (PCL) was dissolved at different compositions of formic acid (FA)/dichloromethane (DCM) and was electrospun at different distances. The composition of 80FA/20DCM and distance of 15 cm were selected as optimal conditions by lowest average diameter of fibers and simultaneously good surface uniformity. In the second step, the concentration of PCL was considered variable to achieve the lowest diameter of fibers. Finally, in the third and fourth steps, different concentrations of chitosan (CN) and constant dosage of Melilotus officinalis (MO) extract were added to the solution. The extract contained fibers had a mean diameter of 275 ± 41 nm which is in the required condition for wound caring. Eventually, the optimized PCL/CN and PCL/CN/MO specimens were evaluated by FTIR, DSC, Tensile, water contact angle, antibacterial assays, cell viability, and drug release analysis for determining their function and properties.
Collapse
Affiliation(s)
- Mohammad Shahrousvand
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Hafez Avenue, 15875-4413 Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Hafez Avenue, 15875-4413 Tehran, Iran.
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran.
| |
Collapse
|
8
|
Guerrero J, Häckel S, Croft AS, Albers CE, Gantenbein B. The effects of 3D culture on the expansion and maintenance of nucleus pulposus progenitor cell multipotency. JOR Spine 2021; 4:e1131. [PMID: 33778405 PMCID: PMC7984018 DOI: 10.1002/jsp2.1131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Low back pain (LBP) is a global health concern. Increasing evidence implicates intervertebral disk (IVD) degeneration as a major contributor. In this respect, tissue-specific progenitors may play a crucial role in tissue regeneration, as these cells are perfectly adapted to their niche. Recently, a novel progenitor cell population was described in the nucleus pulposus (NP) that is positive for Tie2 marker. These cells have self-renewal capacity and in vitro multipotency potential. However, extremely low numbers of the NP progenitors limit the feasibility of cell therapy strategies. OBJECTIVE Here, we studied the influence of the culture method and of the microenvironment on the proliferation rate and the differentiation potential of human NP progenitors in vitro. METHOD Cells were obtained from human NP tissue from trauma patients. Briefly, the NP tissue cells were cultured in two-dimensional (2D) (monolayer) or three-dimensional (3D) (alginate beads) conditions. After 1 week, cells from 2D or 3D culture were expanded on fibronectin-coated flasks. Subsequently, expanded NP cells were then characterized by cytometry and tri-lineage differentiation, which was analyzed by qPCR and histology. Moreover, experiments using Tie2+ and Tie2- NP cells were also performed. RESULTS The present study aims to demonstrate that 3D expansion of NP cells better preserves the Tie2+ cell populations and increases the chondrogenic and osteogenic differentiation potential compared to 2D expansion. Moreover, the cell sorting experiments reveal that only Tie2+ cells were able to maintain the pluripotent gene expression if cultured in 3D within alginate beads. Therefore, our results highly suggest that the maintenance of the cell's multipotency is mainly, but not exclusively, due to the higher presence of Tie2+ cells due to 3D culture. CONCLUSION This project not only might have a scientific impact by evaluating the influence of a two-step expansion protocol on the functionality of NP progenitors, but it could also lead to an innovative clinical approach.
Collapse
Affiliation(s)
- Julien Guerrero
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Sonja Häckel
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Andreas S. Croft
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| |
Collapse
|
9
|
Opportunities and Challenges in Tunneling Nanotubes Research: How Far from Clinical Application? Int J Mol Sci 2021; 22:ijms22052306. [PMID: 33669068 PMCID: PMC7956326 DOI: 10.3390/ijms22052306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.
Collapse
|
10
|
Guo M, Yin Z, Chen F, Lei P. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer's disease. Alzheimers Res Ther 2020; 12:109. [PMID: 32928293 PMCID: PMC7488700 DOI: 10.1186/s13195-020-00670-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) has been a devastating public health with the development of global aging. Approaches for reducing the current AD epidemic are becoming a primary focus of human healthcare due to the lack of achieved lasting and complete remission strategies to treat AD with the characteristics of heterogeneity and complexity. Exosomes, which is the new emerging approach to intercellular communication, provide novel perspective on identified therapeutic strategies of AD. Mesenchymal stem cell-derived exosomes (MSC-exos) are emerging to be an appealing therapeutic tool for AD, with the donor-derived properties and the characteristics of minimal immunogenicity, effortless storage, nature delivery vehicles, and low risks of tumor formation based on the previous researches. In this review, we elaborate the mechanism of MSC-exos in the treatment of AD and discuss limitations in the clinical application.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|