1
|
Chen S, Xie C, Long X, Wang X, Li X, Liu P, Liu J, Wang Z. Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment. Tissue Eng Regen Med 2025; 22:195-210. [PMID: 39825992 PMCID: PMC11794904 DOI: 10.1007/s13770-024-00691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge. METHODS A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility. RESULTS The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively. CONCLUSION This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
Collapse
Affiliation(s)
- Shen Chen
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Chao Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410001, People's Republic of China
| | - Xiaoxi Long
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Xianwei Wang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| | - Xudong Li
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Peng Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Jiabin Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China
| |
Collapse
|
2
|
Tan Y, Chen Y, Lu T, Witman N, Yan B, Gong Y, Ai X, Yang L, Liu M, Luo R, Wang H, Ministrini S, Dong W, Wang W, Fu W. Engineering a conduction-consistent cardiac patch with rGO/PLCL electrospun nanofibrous membranes and human iPSC-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1094397. [PMID: 36845196 PMCID: PMC9944832 DOI: 10.3389/fbioe.2023.1094397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
The healthy human heart has special directional arrangement of cardiomyocytes and a unique electrical conduction system, which is critical for the maintenance of effective contractions. The precise arrangement of cardiomyocytes (CMs) along with conduction consistency between CMs is essential for enhancing the physiological accuracy of in vitro cardiac model systems. Here, we prepared aligned electrospun rGO/PLCL membranes using electrospinning technology to mimic the natural heart structure. The physical, chemical and biocompatible properties of the membranes were rigorously tested. We next assembled human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on electrospun rGO/PLCL membranes in order to construct a myocardial muscle patch. The conduction consistency of cardiomyocytes on the patches were carefully recorded. We found that cells cultivated on the electrospun rGO/PLCL fibers presented with an ordered and arranged structure, excellent mechanical properties, oxidation resistance and effective guidance. The addition of rGO was found to be beneficial for the maturation and synchronous electrical conductivity of hiPSC-CMs within the cardiac patch. This study verified the possibility of using conduction-consistent cardiac patches to enhance drug screening and disease modeling applications. Implementation of such a system could one day lead to in vivo cardiac repair applications.
Collapse
Affiliation(s)
- Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Chen
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Lu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nevin Witman
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minglu Liu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland,Department of Medicine and Surgery, Internal Medicine, Angiology and Atherosclerosis, University of Perugia, Perugia, Italy
| | - Wei Dong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Wei Dong, ; Wei Wang, ; Wei Fu,
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Wei Dong, ; Wei Wang, ; Wei Fu,
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Wei Dong, ; Wei Wang, ; Wei Fu,
| |
Collapse
|
3
|
Liu M, Wang R, Liu J, Zhang W, Liu Z, Lou X, Nie H, Wang H, Mo X, Abd-Elhamid AI, Zheng R, Wu J. Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112609. [DOI: 10.1016/j.msec.2021.112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
|