1
|
Albadr RJ, Taher WM, Alwan M, Jawad MJ, Mushtaq H, Yaseen BM. A review on the potential use of bismuth nanoparticles in oral health. Microb Pathog 2025; 198:107131. [PMID: 39557226 DOI: 10.1016/j.micpath.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
According to many investigations, persistent oral infections may be caused by oral pathogenic biofilms. Irritation of soft tissues and subsequent bone resorption due to bacterial biofilm contamination of the implant further worsen oral health. Dental problems may be effectively treated using metal nanoparticles (NPs) because they limit the development of many different types of bacteria. With their low toxicity, X-ray sensitivity, high atomic number, near-infrared driven semiconductor qualities, and cheap cost, multifunctional bismuth (Bi) NPs with therapeutic activities show significant potential for the domains of bacterial infection diagnostics and treatment. Also, by directly communicating with the bacterial cell wall, stimulating intracellular effects, inhibiting biofilm formation, producing reactive oxygen species, and inducing adaptive and innate immune responses, BiNPs offer an alternative to conventional antibiotics for treating bacteria with multiple drug resistance (MDR). Hence, BiNPs, which have more antibacterial activity and fewer side effects than chlorhexidine, might be a promising option to fight biofilm-forming bacteria in the mouth. This could lead to their usage in several areas of dentistry. The research delves into the many synthesis techniques of BiNPs and their antibacterial and anticancer capabilities. Next, we'll review how this nanoparticle has helped with dental infections, periodontitis, and dental implant problems. The anticancer effects of BiNPs on oral cancer were also studied. Thus, after this paper, we have highlighted the therapeutic limits and ways to address this issue for the clinical success of BiNPs in promoting oral and dental health.
Collapse
Affiliation(s)
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | | - Baraa Mohammed Yaseen
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| |
Collapse
|
2
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
3
|
Chen S, Li Y, Yan E, Lu H, Gao J, Wang Y. A novel polyhydroxyalkanoate/polyvinyl alcohol composite porous membrane via electrospinning and spin coating as potential application for chemotherapy and tissue engineering. POLYM ADVAN TECHNOL 2023; 34:3154-3163. [DOI: 10.1002/pat.6133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 01/06/2025]
Abstract
AbstractPolyhydroxyalkanoate/polyvinyl alcohol (PHA/PVA) composite porous membranes were successfully prepared by coupling of electrospinning and spin‐coating. The resulting composite membranes were characterized by scanning electron microscope (SEM), FT‐IR spectrometer, x‐ray diffraction (XRD), contact angle tester and Brunner–Emmet–Teller (BET). It indicated that the PHA/PVA membrane belonged to a mesoporous material, which can be used as a drug delivery carrier for doxorubicin hydrochloride (DOX). In vitro drug release experiments showed that DOX loaded PHA/PVA composite membranes presented higher DOX release level in acidic environment than that in neutral environment since the degradation rate of the membranes under pH = 4 was significantly higher. And that, the DOX loaded membranes exhibited excellent performance for inhibiting the growth of Caco‐2 cells, which revealed the membranes' biomedical potential for chemotherapy of colon cancer. Meanwhile, in view of the good adhesion of the cells to the membranes, this novel mesoporous material was also perspective in tissue engineering.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Yuxin Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Eryun Yan
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Hong Lu
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Jianwei Gao
- College of Food and Biological Engineering Qiqihar University Qiqihar People's Republic of China
| | - Yan Wang
- College of Food and Biological Engineering Qiqihar University Qiqihar People's Republic of China
| |
Collapse
|
4
|
Yu SL. Diagnostic potential of miR-200 family members in gingival crevicular fluid for chronic periodontitis: correlation with clinical parameters and therapeutic implications. BMC Oral Health 2023; 23:532. [PMID: 37525201 PMCID: PMC10391752 DOI: 10.1186/s12903-023-03174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the potential of miR-200 family members in gingival crevicular fluid (GCF) as diagnostic biomarkers for chronic periodontitis (CP), aiming to provide valuable insights for the early detection and management of the disease. METHODS GSE89081 dataset profiled miRNAs in GCF derived from 5 healthy and 5 periodontitis was analyzed by GEO2R. Quantitative real-time PCR was used to quantify the expression levels of miR-200 family members (miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p, miR-200c-3p, miR-200c-5p, miR-141-3p, miR-141-5p, and miR-429) in the GCF samples from 103 CP patients and 113 healthy controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic potential of miR-200 family members in differentiating CP patients from healthy controls. RESULTS By analyzing the GSE89081 dataset, miR-200a-5p, miR-200b-5p and miR-200c-5p were significantly upregulated in GCF of the CP patients compared to the healthy control. In this study, miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p, miR-200c-3p, miR-200c-5p were significantly increased in GCF of CP patients compared to the healthy control, while miR-141 and miR-429 did not show significant differences. MiR-200a, -200b and 200c had good diagnostic value, and when these miRNAs were combined, they demonstrated excellent diagnostic value for CP with an AUC of 0.997, sensitivity of 99.03%, and specificity of 98.23%. MiR-200a, -200b and 200c in GCF showed significant and positive correlation with plaque index (PI), gingival index (GI), bleeding on probing (BOP), clinical attachment level (CAL), and probing pocket depth (PPD). CONCLUSION MiR-200a, -200b and 200c in GCF may serve as potential biomarkers for the early diagnosis of CP, which was correlated with clinical parameters, being therapeutic targets for CP.
Collapse
Affiliation(s)
- Shi-Lei Yu
- HangZhou Dental Hospital, HangZhou, 310000, Zhejiang, China.
| |
Collapse
|
5
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
6
|
Webb BCW, Glogauer M, Santerre JP. The Structure and Function of Next-Generation Gingival Graft Substitutes-A Perspective on Multilayer Electrospun Constructs with Consideration of Vascularization. Int J Mol Sci 2022; 23:5256. [PMID: 35563649 PMCID: PMC9099797 DOI: 10.3390/ijms23095256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
There is a shortage of suitable tissue-engineered solutions for gingival recession, a soft tissue defect of the oral cavity. Autologous tissue grafts lead to an increase in morbidity due to complications at the donor site. Although material substitutes are available on the market, their development is early, and work to produce more functional material substitutes is underway. The latter materials along with newly conceived tissue-engineered substitutes must maintain volumetric form over time and have advantageous mechanical and biological characteristics facilitating the regeneration of functional gingival tissue. This review conveys a comprehensive and timely perspective to provide insight towards future work in the field, by linking the structure (specifically multilayered systems) and function of electrospun material-based approaches for gingival tissue engineering and regeneration. Electrospun material composites are reviewed alongside existing commercial material substitutes', looking at current advantages and disadvantages. The importance of implementing physiologically relevant degradation profiles and mechanical properties into the design of material substitutes is presented and discussed. Further, given that the broader tissue engineering field has moved towards the use of pre-seeded scaffolds, a review of promising cell options, for generating tissue-engineered autologous gingival grafts from electrospun scaffolds is presented and their potential utility and limitations are discussed.
Collapse
Affiliation(s)
- Brian C. W. Webb
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
| | - J. Paul Santerre
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada; (B.C.W.W.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, 164 Collage St Room 407, Toronto, ON M5S 3G9, Canada
| |
Collapse
|