1
|
Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. Antibacterial and osteogenic properties of chitosan-polyethylene glycol nanofibre-coated 3D printed scaffold with vancomycin and insulin-like growth factor-1 release for bone repair. Int J Biol Macromol 2025; 298:139883. [PMID: 39818389 DOI: 10.1016/j.ijbiomac.2025.139883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing. To modify the surface properties and facilitate the loading and release of therapeutics, the scaffold was coated with chitosan-polyethylene glycol (CS-PEG) nanofibers incorporating vancomycin (V) and insulin-like growth factor-1 (IGF1). The characterization was conducted using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the release of V (93.43 %) and IGF1 (95.86 %) from the fabricated scaffolds persisted for 28 days in a phosphate-buffered saline (PBS) solution. The release of V resulted in antibacterial activity against Staphylococcus aureus (S. aureus), forming an inhibition zone of 21.16 mm. Additionally, it was demonstrated that the release of IGF1 could counteract the adverse effect of V release on cell behavior, and enhance the adhesion and proliferation of MG63 cells. Preclinical in vivo studies conducted on a rat calvarial defect model validated that the bone repair was fully completed in the group treated with the fabricated scaffold within 8 weeks. Consequently, the scaffold designed in this study can serve as a versatile scaffold for achieving perfect repair of craniofacial defects.
Collapse
Affiliation(s)
- Saiedeh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamed Ghomi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
2
|
El-Bahrawy NR, Hafez AAAEL, Elmekawy A, Salem M, Sarhan N, Morsy R. Development and characterization of nano-hydroxyapatite/gelatin/PVA/alginate-based multifunctional active scaffolds for bone regeneration: An in vitro and in vivo study. Int J Biol Macromol 2025; 307:141160. [PMID: 39965692 DOI: 10.1016/j.ijbiomac.2025.141160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/04/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Multifunctional porous bone scaffolds that combine reparative and therapeutic features are promising for bone tissue engineering applications. Therefore, we developed freeze-dried scaffolds based on the in situ synthesis of hydroxyapatite nanoparticles (HAp NPs) within a gelatin-polyvinyl alcohol (PVA)-alginate matrix using a co-precipitation method. Ceftazidime and 5-fluorouracil (5-FU) were used as drug models and were separately loaded into the fabricated scaffolds. The hybrid scaffolds exhibited an ultimate compressive strength of 1.1 MPa and flexible behavior favored for fitting irregular bone defects. 5-FU-loaded scaffolds showed higher bioactive potential within 3 days compared to ceftazidime-loaded scaffolds. The scaffolds exhibited a long-term degradation rate, and thereby prolonged release of ceftazidim and 5-FU for up to 28 days. 5-FU-loaded scaffolds showed excellent nearly equal antibacterial activity to ceftazidime-loaded scaffolds against Staphylococcus epidermidis and Escherichia coli strains. Osteosarcoma cell death was achieved by increased concentrations of ceftazidime and 5-FU treatment above 300 μg/mL and 250 μg/mL, respectively. The developed scaffolds displayed higher bone formation ability with better osteogenesis in a femoral rat bone defect model compared to the control sample. This work represents a promising solution for bone defect repair and provides insight into the development of multifunctional scaffolds for local chemotherapy and bone tissue engineering applications.
Collapse
Affiliation(s)
- Nadia R El-Bahrawy
- Biophysics Lab, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | | | - Ahmed Elmekawy
- Biophysics Lab, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Naglaa Sarhan
- Histology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reda Morsy
- Biophysics Lab, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. 3D printed polylactic acid/polyethylene glycol/bredigite nanocomposite scaffold enhances bone tissue regeneration via promoting osteogenesis and angiogenesis. Int J Biol Macromol 2024; 281:136160. [PMID: 39357695 DOI: 10.1016/j.ijbiomac.2024.136160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Recently, the fabrication of personalized scaffolds with high accuracy has been developed through 3D printing technology. In the current study, polylactic acid/polyethylene glycol (PLA/PEG) composite scaffolds with varied weight percentages (0, 5, 10, 20 and 30 %) of bredigite nanoparticles (B) were fabricated using the 3D printing and then characterized through scanning electron microscopy and Fourier transform infra-red spectroscopy. The addition of B nanoparticles up to 20 wt% to PLA/PEG scaffold increased the compressive strength (from 7.59 to 13.84 MPa) and elastic modulus (from 142.42 to 268.33 MPa). The apatite formation ability as well as inorganic ion release in simulated body fluid were investigated for 28 days. The MG-63 cells viability and adhesion were enhanced by increasing the amount of B in the PLA/PEG scaffold and the osteogenic differentiation of the rat bone marrow mesenchymal stem cells was confirmed by alkaline phosphatase activity test and alizarin red staining. According to chorioallantoic membrane assay, the highest angiogenesis occurred around the PLA/PEG/B30 scaffold. In vivo experiments on a rat calvarial defect model demonstrated an almost complete recovery in the PLA/PEG/B30 group within 8 weeks. Based on the results, the PLA/PEG/B30 composite scaffold is proposed as an optimal scaffold to repair bone defects.
Collapse
Affiliation(s)
- Saiedeh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamed Ghomi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
4
|
Tong Y, Yuan J, Li Z, Deng C, Cheng Y. Drug-Loaded Bioscaffolds for Osteochondral Regeneration. Pharmaceutics 2024; 16:1095. [PMID: 39204440 PMCID: PMC11360256 DOI: 10.3390/pharmaceutics16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy.
Collapse
Affiliation(s)
| | | | | | - Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| |
Collapse
|
5
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
6
|
Xia S, Qin X, Wang J, Ren H. Advancements in the pathogenesis of hepatic osteodystrophy and the potential therapeutic of mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:359. [PMID: 38087318 PMCID: PMC10717286 DOI: 10.1186/s13287-023-03605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatic osteodystrophy (HOD) is a metabolically associated bone disease mainly manifested as osteoporosis with the characteristic of bone loss induced by chronic liver disease (CLD). Due to its high incidence in CLD patients and increased risk of fracture, the research on HOD has received considerable interest. The specific pathogenesis of HOD has not been fully revealed. While it is widely believed that disturbance of hormone level, abnormal secretion of cytokines and damage of intestinal barrier caused by CLD might jointly affect the bone metabolic balance of bone formation and bone absorption. At present, the treatment of HOD is mainly to alleviate the bone loss by drug treatment, but the efficacy and safety are not satisfactory. Mesenchymal stromal cells (MSCs) are cells with multidirectional differentiation potential, cell transplantation therapy based on MSCs is an emerging therapeutic approach. This review mainly summarized the pathogenesis and treatment of HOD, reviewed the research progress of MSCs therapy and the combination of MSCs and scaffolds in the application of osteoporotic bone defects, and discussed the potential and limitations of MSCs therapy, providing theoretical basis for subsequent studies.
Collapse
Affiliation(s)
- Senzhe Xia
- Department of Oncological Surgery, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Xueqian Qin
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing University, Nanjing, 210008, China.
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
7
|
Najafinezhad A, Bakhsheshi Rad HR, Saberi A, Nourbakhsh AA, Daroonparvar M, Ismail AF, Sharif S, Dai Y, Ramakrishna S, Berto F. Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior. Biomed Mater 2022; 17. [PMID: 35358956 DOI: 10.1088/1748-605x/ac62e8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
It is very desirable to have good antibacterial properties and mechanical properties at the same time for bone scaffolds. Graphene oxide (GO) can increase the mechanical properties and antibacterial performance, while forsterite (Mg2SiO4) as the matrix can increase forsterite/GO scaffolds' biological activity for bone tissue engineering. Interconnected porous forsterite scaffolds were developed by space holder processes for bone tissue engineering in this research. The forsterite/GO scaffolds had a porosity of 76-78% with pore size of 300-450 μm. The mechanism of the mechanical strengthening, antibacterial activity, and cellular function of the forsterite/GO scaffold was evaluated. The findings show that the compressive strength of forsterite/1wt.% GO scaffold (2.4±0.1 MPa) was significantly increased, in comparison to forsterite scaffolds without GO (1.4±0.1 MPa). Validation of the samples' bioactivity was attained by forming a hydroxyapatite (HAp) layer on the forsterite/GO surface within in vitro immersion test. The results of cell viability demonstrated that synthesized forsterite scaffolds with low GO did not show cytotoxicity and enhanced cell proliferation. Antibacterial tests showed that the antibacterial influence of forsterite/GO scaffold was strongly correlated with GO concentration from 0.5 to 2 wt.%. The scaffold encapsulated with 2wt.% GO had the great antibacterial performance with bacterial inhibition rate around 90%. As results show, the produced forsterite/1wt.% GO can be an attractive option for bone tissue engineering.
Collapse
Affiliation(s)
- A Najafinezhad
- Islamic Azad University Najafabad Branch, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, Najafabad, Isfahan Province, 8514143131, Iran (the Islamic Republic of)
| | - Hamid Reza Bakhsheshi Rad
- Universiti Teknologi Malaysia, Faculty of Education, Universiti Teknologi Malaysia, Faculty of Education, Universiti Teknologi Malaysia, Skudai, 81310, MALAYSIA
| | - A Saberi
- Islamic Azad University Najafabad Branch, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, Najafabad, Isfahan Province, 8514143131, Iran (the Islamic Republic of)
| | - Amir Abbas Nourbakhsh
- Islamic Azad University Sahreza Branch, Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran, Shahreza, 8871653388, Iran (the Islamic Republic of)
| | - Mohammadreza Daroonparvar
- University of Nevada Reno, Department of Chemical and Materials Engineering, University of Nevada, Reno, NV, 89501, USA, Reno, Nevada, 89557-0705, UNITED STATES
| | - Ahmad Fauzi Ismail
- Universiti Teknologi Malaysia, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia, Skudai, Johor, 81310, MALAYSIA
| | - Safian Sharif
- Universiti Teknologi Malaysia, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia, Skudai, Johor, 81310, MALAYSIA
| | - Yunqian Dai
- Southeast University, Southeast University, Nanjing, Jiangsu 211189, P. R. China, Nanjing, 210096, CHINA
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Cresent, Singapore 119260, Singapore, 119260, SINGAPORE
| | - Filippo Berto
- Department of Engineering Design and Materials, Norges teknisk-naturvitenskapelige universitet, Norwegian University of Science and Technology, 7491, Trondheim, Norway, Trondheim, 7491, NORWAY
| |
Collapse
|