1
|
Liu B, Jiang Y, Tian Y, Li T, Zhang D. Enhanced Ear Cartilage Regeneration with Dual-Network LT-GelMA/F127DA Hydrogel Featuring Nanomicelle Integration. ACS OMEGA 2025; 10:13570-13582. [PMID: 40224461 PMCID: PMC11983353 DOI: 10.1021/acsomega.5c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Tissue-engineered cartilage, supported by advancements in photo-cross-linkable hydrogels, offers a promising solution for the repair and regeneration of damaged cartilage in anatomically complex and mechanically demanding sites. Low-temperature soluble GelMA (LT-GelMA) remains in a liquid state at room temperature, allowing for easier handling; however, it has limitations in mechanical strength and structural stability. To address these limitations, we developed a novel dual-network hydrogel combining LT-GelMA with Pluronic F127-diacrylate (F127DA). The resulting hydrogel uniquely integrates the low-temperature solubility of LT-GelMA with the enhanced mechanical strength provided by photo-cross-linkable F127DA nanomicelles. Additionally, the hydrogel exhibits controlled swelling and biodegradation rates. In vitro studies revealed a significant increase in chondrocyte viability by day 7 in formulations with higher F127DA concentrations. In vivo, the hydrogel demonstrated superior neo-cartilage formation in a subcutaneous nude mouse model, as indicated by increased deposition of cartilage-specific extracellular matrix components at 4 and 8 weeks. In summary, we developed a hydrogel with fluidity at room temperature and enhanced mechanical performance. These results indicate that the LT-GelMA/F127DA hydrogel effectively addresses the current gaps in cartilage tissue engineering. The hydrogel's superior performance, especially in promoting cartilage regeneration, positions it as a promising alternative for reconstructive surgery, representing a significant improvement over existing cartilage repair strategies.
Collapse
Affiliation(s)
- Bingzhang Liu
- Department of Plastic and Reconstructive
Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive
Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yufeng Tian
- Department of Plastic and Reconstructive
Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Tian Li
- Department of Plastic and Reconstructive
Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Duo Zhang
- Department of Plastic and Reconstructive
Surgery, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Liu B, Wang P, Lv X. Phytol-mixed micelles alleviate dexamethasone-induced osteoporosis in zebrafish: Activation of the MMP3-OPN-MAPK pathway-mediating bone remodeling. Open Life Sci 2025; 20:20221015. [PMID: 40129470 PMCID: PMC11931661 DOI: 10.1515/biol-2022-1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 03/26/2025] Open
Abstract
This research investigates the therapeutic efficacy of phytol-mixed micelles in mitigating dexamethasone (Dex)-induced osteoporosis in zebrafish, with a particular focus on scale regeneration. Osteoporosis was induced in zebrafish through exposure to Dex, and the effects of phytol-mixed micelles were evaluated in this model. Following phytol therapy, bone mineralization was assessed using calcium, phosphorus, and alizarin red staining tests. Additionally, commercially available kits quantified the levels of tartrate-resistant acid phosphatase (TRAP), hydroxyproline (HP), and alkaline phosphatase (ALP). The mRNA expression levels of MMP3, osteopontin (OPN), and mitogen-activated protein kinase (MAPK) were examined using reverse transcription polymerase chain reaction (RT-PCR). The findings indicated that phytol significantly increased calcium and phosphorus concentrations. Phytol-mixed micelle therapy led to increased calcium deposition and enhanced bone formation, as evidenced by alizarin red staining. Moreover, phytol administration resulted in increased HP content and upregulated ALP and TRAP activities in zebrafish. RT-PCR tests demonstrated that phytol plays a role in the restoration of the MMP3-OPN-MAPK pathway. In summary, this research highlights the potential of phytol-mixed micelles in ameliorating Dex-induced osteoporosis in zebrafish. Clarifying phytol's mechanism, particularly its stimulation of the MMP3-OPN-MAPK pathway, provides insight into its role in facilitating bone remodeling.
Collapse
Affiliation(s)
- Bo Liu
- Department of Trauma Surgery, Hebei Port Group Co LTD. Qinhuangdao Hospital of Integrated Chinese and Western Medicine, Qinhuangdao, Hebei, 066003, China
| | - Peng Wang
- Department of Spine Surgery, Shengli Oilfield Central Hospital,
Dongying, Shandong, 257000, China
| | - Xiangyang Lv
- Department of Orthopedics, Xi’an Qinhuang Hospital, Xi’an, Shaanxi, 710600, China
| |
Collapse
|
3
|
Liu W, Jiang H, Chen J, Tian Y, He Y, Jiao Y, Guan Y, Jia Z, Wu Y, Huang C, Ouyang Y, Xu W, Qi J, Peng J, Wang A. High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration. Mater Today Bio 2025; 30:101372. [PMID: 39839494 PMCID: PMC11745967 DOI: 10.1016/j.mtbio.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores. However, the extracellular matrix (ECM) of native cartilage can provide structural support and is an ideal source of microcarriers. Autologous adipose-derived mesenchymal stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) are widely used in cartilage tissue engineering. In this study, we fabricated microcarriers and compared the behavior of two homologous cell types in the microcarrier environment. The microcarrier environment highlighted the advantages of ADSCs and promoted the proliferation and migration of these cells. Then, ADSCs microtissues (ADSCs-MT) and BMSCs microtissues (BMSCs-MT) were fabricated using a three-dimensional dynamic culture system. In vitro and in vivo experiments verified that the cartilage regeneration ability of ADSCs-MT was significantly superior to that of BMSCs-MT. Transcriptomics revealed that ADSCs-MT showed significantly lower expression levels of ECM degradation, osteogenesis, and fibrocartilage markers. Finally, the protective effect of microtissues on inflammatory chondrocytes was validated. Overall, the ADSCs-MT constructed in this study achieved excellent cartilage regeneration and could be promising for the autologous application of cartilage microtissues.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Hongyu Jiang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajie Chen
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Yue Tian
- The Second Medical Center of Chinese PLA General Hospital, PR China
| | - Ying He
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Ying Jiao
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Zhibo Jia
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yanbin Wu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Cheng Huang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Yiben Ouyang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Wenjing Xu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Jianhong Qi
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Aiyuan Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
4
|
Haghwerdi F, Haririan I, Soleimani M. Chondrogenic potential of PMSCs cultured on chondroitin sulfate/gelatin-modified DBM scaffold. BIOIMPACTS : BI 2024; 15:30003. [PMID: 40161935 PMCID: PMC11954754 DOI: 10.34172/bi.2023.30003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 04/02/2025]
Abstract
Introduction Osteoarthritis is one of the most common orthopedic diseases that gradually causes wear and damage to the articular Subchondral bone due to the destruction of articular cartilage. One of the basic challenges in cartilage tissue engineering is the choice of scaffold. In the design of the cartilage scaffold, it is useful to consider parameters such as porosity, water absorption, high mechanical resistance, biocompatibility, and biodegradability. Therefore, in this study, demineralized bone matrix (DBM), which inherently has these characteristics to some extent, was chosen as the basic scaffold. Methods The gelatin/DBM (G/DBM) and the chondroitin sulfate-gelatin/DBM (GCS/DBM) scaffolds were prepared, respectively, by incorporating gelatin or chondroitin sulfate/gelatin solution inside DBM pores, freeze-drying and crosslinking with EDC/NHS. The physicochemical, biological characteristics and chondrogenic potential of scaffolds were studied. Results According to the SEM results, the size of the DBM pores in the G/DBM and GCS/DBM scaffolds decreased (from almost 100-1500 µm to less than 200 µm), which reduced cell escape compared to the DBM scaffold. Also, crosslinking the scaffolds has greatly increased their compressive E-modulus (more than 8 times). The cytocompatibility and non- toxicity of all scaffolds were confirmed by acridine orange/ethidium bromide (AO/EB) staining. The evaluation results of chondrogenic differentiation of placenta-derived mesenchymal stem cells (PMSCs) on modified scaffolds, using the real-time PCR method, showed that the presence of CS in the GCS/DBM scaffold improved the expression of chondrogenesis markers such as Aggrecan (AGC) (~4 times) and collagen 2 (COL-2) (~2.2 times) compared to the DBM scaffold. Also, Alcian blue staining and immunohistochemical analyses of the scaffolds showed denser and more coherent GAGs and COL-2 protein synthesis on the GCS/DBM than the G/DBM and DBM scaffolds. Conclusion According to the results, the GCS/DBM scaffold can be a suitable scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Fatemeh Haghwerdi
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Cao H, Deng S, Chen X, Cui X, Yuan T, Liang J, Zhang X, Fan Y, Wang Q. An injectable cartilage-coating composite with long-term protection, effective lubrication and chondrocyte nourishment for osteoarthritis treatment. Acta Biomater 2024; 179:95-105. [PMID: 38513723 DOI: 10.1016/j.actbio.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
The osteoarthritic (OA) environment within articular cartilage poses significant challenges, resulting in chondrocyte dysfunction and cartilage matrix degradation. While intra-articular injections of anti-inflammatory drugs, biomaterials, or bioactive agents have demonstrated some effectiveness, they primarily provide temporary relief from OA pain without arresting OA progression. This study presents an injectable cartilage-coating composite, comprising hyaluronic acid and decellularized cartilage matrix integrated with specific linker polymers. It enhances the material retention, protection, and lubrication on the cartilage surface, thereby providing an effective physical barrier against inflammatory factors and reducing the friction and shear force associated with OA joint movement. Moreover, the composite gradually releases nutrients, nourishing OA chondrocytes, aiding in the recovery of cellular function, promoting cartilage-specific matrix production, and mitigating OA progression in a rat model. Overall, this injectable cartilage-coating composite offers promising potential as an effective cell-free treatment for OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) in the articular cartilage leads to chondrocyte dysfunction and cartilage matrix degradation. This study introduces an intra-articular injectable composite material (HDC), composed of decellularized cartilage matrix (dECMs), hyaluronan (HA), and specially designed linker polymers to provide an effective cell-free OA treatment. The linker polymers bind HA and dECMs to form an integrated HDC structure with an enhanced degradation rate, potentially reducing the need for frequent injections and associated trauma. They also enable HDC to specifically coat the cartilage surface, forming a protective and lubricating layer that enhances long-term retention, acts as a barrier against inflammatory factors, and reduces joint movement friction. Furthermore, HDC nourishes OA chondrocytes through gradual nutrient release, aiding cellular function recovery, promoting cartilage-specific matrix production, and mitigating OA progression.
Collapse
Affiliation(s)
- Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Siyan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xi Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolin Cui
- School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, China; Department of Orthopedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
| | - Tun Yuan
- Sichuan Testing Center for Biomaterials and Medical Devices Co. Ltd, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Jie Liang
- Sichuan Testing Center for Biomaterials and Medical Devices Co. Ltd, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China; College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
7
|
Wang F, Wang H, Shan X, Mei J, Wei P, Song Q, Chen W. High-strength and high-toughness ECM films with the potential for peripheral nerve repair. Biomed Mater 2023; 19:015010. [PMID: 38048625 DOI: 10.1088/1748-605x/ad11fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Extracellular matrix (ECM) scaffolds are widely applied in the field of regeneration as the result of their irreplaceable biological advantages, and the preparation of ECM scaffolds into ECM hydrogels expands the applications to some extent. However, weak mechanical properties of current ECM materials limit the complete exploitation of ECM's biological advantages. To enable ECM materials to be utilized in applications requiring high strength, herein, we created a kind of new ECM material, ECM film, and evaluated its mechanical properties. ECM films exhibited outstanding toughness with no cracks after arbitrarily folding and crumpling, and dramatically high strength levels of 86 ± 17.25 MPa, the maximum of which was 115 MPa. Such spectacular high-strength and high-toughness films, containing only pure ECM without any crosslinking agents and other materials, far exceed current pure natural polymer gel films and even many composite gel films and synthetic polymer gel films. In addition, both PC12 cells and Schwann cells cultured on the surface of ECM films, especially Schwann cells, showed good proliferation, and the neurite outgrowth of the PC12 cells was promoted, indicating the application potential of ECM film in peripheral nerve repair.
Collapse
Affiliation(s)
- Fangfang Wang
- Medical Research Center, The First Affiliated Hospital of Ningbo University; Ningbo University, Ningbo 315010, People's Republic of China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, People's Republic of China
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Haiyang Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Xiaotong Shan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Jin Mei
- Medical Research Center, The First Affiliated Hospital of Ningbo University; Ningbo University, Ningbo 315010, People's Republic of China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Qinghua Song
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Weiwei Chen
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| |
Collapse
|
8
|
Liu Q, Li J, Chang J, Guo Y, Wen D. The characteristics and medical applications of antler stem cells. Stem Cell Res Ther 2023; 14:225. [PMID: 37649124 PMCID: PMC10468909 DOI: 10.1186/s13287-023-03456-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Antlers are the only fully regenerable mammalian appendages whose annual renewal is initiated by antler stem cells (ASCs), defined as a specialized type of mesenchymal stem cells (MSCs) with embryonic stem cell properties. ASCs possess the same biological features as MSCs, including the capacity for self-renewal and multidirectional differentiation, immunomodulatory functions, and the maintenance of stem cell characteristics after multiple passages. Several preclinical studies have shown that ASCs exhibit promising potential in wound healing, bone repair, osteoarthritis, anti-tissue fibrosis, anti-aging, and hair regeneration. Medical applications based on ASCs and ASC-derived molecules provide a new source of stem cells and therapeutic modalities for regenerative medicine. This review begins with a brief description of antler regeneration and the role of ASCs. Then, the properties and advantages of ASCs are described. Finally, medical research advances regarding ASCs are summarized, and the prospects and challenges of ASCs are highlighted.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Chang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dacheng Wen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Nedrelow DS, Townsend JM, Detamore MS. The Ogden model for hydrogels in tissue engineering: Modulus determination with compression to failure. J Biomech 2023; 152:111592. [PMID: 37119702 DOI: 10.1016/j.jbiomech.2023.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/01/2023]
Abstract
Hydrogel mechanical properties for tissue engineering are often reported in terms of a compressive elastic modulus derived from a linear regression of a typically non-linear stress-strain plot. There is a need for an alternative model to fit the full strain range of tissue engineering hydrogels. Fortunately, the Ogden model provides a shear modulus, μ0, and a nonlinear parameter, α, for routine analysis of compression to failure. Three example hydrogels were tested: (1) pentenoate-modified hyaluronic acid (PHA), (2) dual-crosslinked PHA and polyethylene glycol diacrylate (PHA-PEGDA), and (3) composite PHA-PEGDA hydrogel with cryoground devitalized cartilage (DVC) at 5, 10, and 15%w/v concentration (DVC5, DVC10, and DVC15, respectively). Gene expression analyses suggested that the DVC hydrogels supported chondrogenesis of human bone marrow mesenchymal stem cells to some degree. Both linear regression (5 to 15% strain) and Ogden fits (to failure) were performed. The compressive elastic modulus, E, was over 4-fold higher in the DVC15 group relative to the PHA group (129 kPa). Similarly, the shear modulus, μ0, was over 3-fold higher in the DVC15 group relative to the PHA group (37 kPa). The PHA group exhibited a much higher degree of nonlinearity (α = 10) compared to the DVC15 group (α = 1.4). DVC hydrogels may provide baseline targets of μ0 and α for future cartilage tissue engineering studies. The Ogden model was demonstrated to fit the full strain range with high accuracy (R2 = 0.998 ± 0.001) and to quantify nonlinearity. The current study provides an Ogden model as an attractive alternative to the elastic modulus for tissue engineering constructs.
Collapse
Affiliation(s)
- David S Nedrelow
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
10
|
Zelinka A, Roelofs AJ, Kandel RA, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage 2022; 30:1547-1560. [PMID: 36150678 DOI: 10.1016/j.joca.2022.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
Articular cartilage (AC) has limited capacity for repair. The first attempt to repair cartilage using tissue engineering was reported in 1977. Since then, cell-based interventions have entered clinical practice in orthopaedics, and several tissue engineering approaches to repair cartilage are in the translational pipeline towards clinical application. Classically, these involve a scaffold, substrate or matrix to provide structure, and cells such as chondrocytes or mesenchymal stromal cells to generate the tissue. We discuss the advantages and drawbacks of the use of various cell types, natural and synthetic scaffolds, multiphasic or gradient-based scaffolds, and self-organizing or self-assembling scaffold-free systems, for the engineering of cartilage constructs. Several challenges persist including achieving zonal tissue organization and integration with the surrounding tissue upon implantation. Approaches to improve cartilage thickness, organization and mechanical properties include mechanical stimulation, culture under hypoxic conditions, and stimulation with growth factors or other macromolecules. In addition, advanced technologies such as bioreactors, biosensors and 3D bioprinting are actively being explored. Understanding the underlying mechanisms of action of cell therapy and tissue engineering approaches will help improve and refine therapy development. Finally, we discuss recent studies of the intrinsic cellular and molecular mechanisms of cartilage repair that have identified novel signals and targets and are inspiring the development of molecular therapies to enhance the recruitment and cartilage reparative activity of joint-resident stem and progenitor cells. A one-fits-all solution is unrealistic, and identifying patients who will respond to a specific targeted treatment will be critical.
Collapse
Affiliation(s)
- A Zelinka
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - A J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - R A Kandel
- Lunenfeld Tanenbaum Research Institute, Sinai Health, Dept. Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - C De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
11
|
Coope A, Ghanameh Z, Kingston O, Sheridan CM, Barrett-Jolley R, Phelan MM, Oldershaw RA. 1H NMR Metabolite Monitoring during the Differentiation of Human Induced Pluripotent Stem Cells Provides New Insights into the Molecular Events That Regulate Embryonic Chondrogenesis. Int J Mol Sci 2022; 23:ijms23169266. [PMID: 36012540 PMCID: PMC9409419 DOI: 10.3390/ijms23169266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation. We used 1H NMR metabolite fingerprinting and footprinting to monitor metabolite levels as IPSCs are directed in a three-stage protocol through primitive streak/mesendoderm, mesoderm and chondrogenic populations. Metabolite changes were associated with central metabolism, with aerobic glycolysis predominant in IPSC, elevated oxidative phosphorylation during differentiation and fatty acid oxidation and ketone body use in chondrogenic cells. Metabolites were also implicated in the epigenetic regulation of pluripotency, cell signalling and biosynthetic pathways. Our results show that 1H NMR metabolomics is an effective tool for monitoring metabolite changes during the differentiation of pluripotent cells with implications on optimising media and environmental parameters for the study of embryogenesis and translational applications.
Collapse
Affiliation(s)
- Ashley Coope
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Clinical Directorate Professional Services, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Lower Lane, Liverpool L9 7AL, UK
| | - Zain Ghanameh
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Olivia Kingston
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Carl M. Sheridan
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Marie M. Phelan
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L7 7BE, UK
- High Field NMR Facility, Liverpool Shared Research Facilities (LIV-SRF), Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
12
|
Wu G, Lu L, Ci Z, Wang Y, Shi R, Zhou G, Li S. Three-Dimensional Cartilage Regeneration Using Engineered Cartilage Gel With a 3D-Printed Polycaprolactone Framework. Front Bioeng Biotechnol 2022; 10:871508. [PMID: 35685090 PMCID: PMC9171075 DOI: 10.3389/fbioe.2022.871508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The feasibility of the three-dimensional (3D) cartilage regeneration technology based on the "steel (framework)-reinforced concrete (engineered cartilage gel, ECG)" concept has been verified in large animals using a decalcified bone matrix (DBM) as the framework. However, the instability of the source, large sample variation, and lack of control over the 3D shape of DBM have greatly hindered clinical translation of this technology. To optimize cartilage regeneration using the ECG-framework model, the current study explores the feasibility of replacing the DBM framework with a 3D-printed polycaprolactone (PCL) framework. The PCL framework showed good biocompatibility with ECG and achieved a high ECG loading efficiency, similar to that of the DBM framework. Furthermore, PCL-ECG constructs caused a milder inflammatory response in vivo than that induced by DBM-ECG constructs, which was further supported by an in vitro macrophage activation experiment. Notably, the PCL-ECG constructs successfully regenerated mature cartilage and essentially maintained their original shape throughout 8 weeks of subcutaneous implantation. Quantitative analysis revealed that the GAG and total collagen contents of the regenerated cartilage in the PCL-ECG group were significantly higher than those in the DBM-ECG group. The results indicated that the 3D-printed PCL framework-a clinically approved biomaterial with multiple advantages including customizable shape design, mechanical strength control, and standardized production-can serve as an excellent framework for supporting the 3D cartilage regeneration of ECG. This provides a feasible novel strategy for the clinical translation of ECG-based 3D cartilage regeneration.
Collapse
Affiliation(s)
- Gaoyang Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Ear Institute Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Wang
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Ear Institute Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Ear Institute Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengli Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|