1
|
Szpiro L, Bourgeay C, Hoareau AL, Julien T, Menard C, Marie Y, Rosa-Calatrava M, Moules V. Antiviral Activity of Active Materials: Standard and Finger-Pad-Based Innovative Experimental Approaches. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2889. [PMID: 37049183 PMCID: PMC10096329 DOI: 10.3390/ma16072889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Environmental surfaces, including high-touch surfaces (HITS), bear a high risk of becoming fomites and can participate in viral dissemination through contact and transmission to other persons, due to the capacity of viruses to persist on such contaminated surface before being transferred to hands or other supports at sufficient concentration to initiate infection through direct contact. Interest in the development of self-decontaminating materials as additional safety measures towards preventing viral infectious disease transmission has been growing. Active materials are expected to reduce the viral charge on surfaces over time and consequently limit viral transmission capacity through direct contact. In this study, we compared antiviral activities obtained using three different experimental procedures by assessing the survival of an enveloped virus (influenza virus) and non-enveloped virus (feline calicivirus) over time on a reference surface and three active materials. Our data show that experimental test conditions can have a substantial impact of over 1 log10 on the antiviral activity of active material for the same contact period, depending on the nature of the virus. We then developed an innovative and reproducible approach based on finger-pad transfer to evaluate the antiviral activity of HITS against a murine norovirus inoculum under conditions closely reflecting real-life surface exposure.
Collapse
Affiliation(s)
- Lea Szpiro
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Clara Bourgeay
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Loic Hoareau
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Camille Menard
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Yana Marie
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Vincent Moules
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| |
Collapse
|
2
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
3
|
Tao Y, Zhou F, Wang K, Yang D, Sacher E. AgCu NP Formation by the Ag NP Catalysis of Cu Ions at Room Temperature and Their Antibacterial Efficacy: A Kinetic Study. Molecules 2022; 27:6951. [PMID: 36296543 PMCID: PMC9607368 DOI: 10.3390/molecules27206951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Although a facile route to prepare AgCu nanoalloys (NAs) with enhanced antibacterial efficacy using Ag NP catalysis of Cu ions at elevated temperatures was previously developed, its detailed reaction process is still unclear due to the fast reaction process at higher temperatures. This work found that AgCu NAs can also be synthesized by the same process but at room temperature. AgCu NAs formation kinetics have been studied using UV-Visible spectra and Transmission Electron Microscopy (TEM), where formation includes Cu2+ deposition onto the Ag NP surface and Ag+ release, reduction, and agglomeration to form new Ag NPs; this is followed by a redistribution of the NA components and coalescence to form larger AgCu NPs. It is found that SPR absorption is linear with time early in the reaction, as expected for both pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetics; neither model is followed subsequently due to contributions from newly formed Ag NPs and AgCu NAs. The antibacterial efficacy of the AgCu NAs thus formed was estimated, with a continuous increase over the whole alloying process, demonstrating the correlation of antibacterial efficacy with the extent of AgCu NA formation and Ag+ release.
Collapse
Affiliation(s)
- Yujie Tao
- Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd, Tian’an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Fang Zhou
- Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd, Tian’an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Kaixin Wang
- Hefei Zhonghang Nanotechnology Development Co., Ltd., Gangji Town Industrial Park, Changfeng County, Hefei 231100, China
| | - Dequan Yang
- Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd, Tian’an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Edward Sacher
- Regroupement Québécois de Matériaux de Pointe, Département de Génie Physique, Polytechnique Montréal, Case Postale 6079, Succursale Centre-Ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
4
|
Cimolai N. Disinfection and decontamination in the context of SARS-CoV-2-specific data. J Med Virol 2022; 94:4654-4668. [PMID: 35758523 PMCID: PMC9350315 DOI: 10.1002/jmv.27959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Given the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as witnessed early in the coronavirus disease 2019 (COVID-19) pandemic, concerns arose with the existing methods for virus disinfection and decontamination. The need for SARS-CoV-2-specific data stimulated considerable research in this regard. Overall, SARS-CoV-2 is practically and equally susceptible to approaches for disinfection and decontamination that have been previously found for other human or animal coronaviruses. The latter have included techniques utilizing temperature modulation, pH extremes, irradiation, and chemical treatments. These physicochemical methods are a necessary adjunct to other prevention strategies, given the environmental and patient surface ubiquity of the virus. Classic studies of disinfection have also allowed for extrapolation to the eradication of the virus on human mucosal surfaces by some chemical means. Despite considerable laboratory study, practical field assessments are generally lacking and need to be encouraged to confirm the correlation of interventions with viral eradication and infection prevention. Transparency in the constitution and use of any method or chemical is also essential to furthering practical applications.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineChildren's and Women's Health Centre of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
5
|
López-Martín R, Rodrigo I, Ballesta C, Arias A, Mas A, Santos Burgos B, Normile PS, De Toro JA, Binns C. Effectiveness of Silver Nanoparticles Deposited in Facemask Material for Neutralising Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2662. [PMID: 35957092 PMCID: PMC9370635 DOI: 10.3390/nano12152662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/23/2023]
Abstract
Cloth used for facemask material has been coated with silver nanoparticles using an aerosol method that passes pure uncoated nanoparticles through the cloth and deposits them throughout the volume. The particles have been characterized by electron microscopy and have a typical diameter of 4 nm with the atomic structure of pure metallic silver presented as an assortment of single crystals and polycrystals. The particles adhere well to the cloth fibers, and the coating consists of individual nanoparticles at low deposition times, evolving to fully agglomerated assemblies in heavy coatings. The cloth was exposed to Usutu virus and murine norovirus particles in suspension and allowed to dry, following which, the infectious virus particles were rescued by soaking the cloth in culture media. It was found that up to 98% of the virus particles were neutralized by this contact with the silver nanoparticles for optimum deposition conditions. The best performance was obtained with agglomerated films and with polycrystalline nanoparticles. The work indicates that silver nanoparticles embedded in masks can neutralize the majority of virus particles that enter the mask and thus increase the opacity of masks to infectious viruses by up to a factor of 50. In addition, the majority of the virus particles released from the mask after use are non-infectious.
Collapse
Affiliation(s)
- Raúl López-Martín
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Imanol Rodrigo
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Carlos Ballesta
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Armando Arias
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Antonio Mas
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Benito Santos Burgos
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Peter S. Normile
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Jose A. De Toro
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chris Binns
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
7
|
Mushtaq A, Iqbal MZ, Kong X. Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. J Mater Chem B 2022; 10:5323-5343. [PMID: 35775993 DOI: 10.1039/d2tb00849a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The world has been suffering from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and millions of people have been infected through human-to-human transmission and lost their lives within months. Although multidisciplinary scientific approaches have been employed to fight against this deadly pandemic, various mutations and diverse environments keep producing constraints in treating SARS-CoV-2. Indeed, the efficacy of the developed vaccines has been limited, and inoculation with the vaccines does not guarantee complete protection even though multiple doses are required, which is a frustrating process. Historically, coinage metals (Cu, Ag, and Au) have been well-known for their effectiveness in antiviral action as well as good biocompatibility, binding receptor inhibition, reactive oxygen species, and phototherapy properties. Thus, this review highlights the diagnostic and therapeutic mechanisms of SARS-CoV-2 using the antivirus ability and mode of action of coinage metals such as viral entry mechanisms into host cells and the NP-inhibition process, which are explained in detail. This article also draws attention to coinage metal nanomaterial-based approaches to treat other contagious viruses. In addition, coinage metal-based biosensors and an overview of some other biocompatible metal-based nanomaterials to fight against SARS-CoV-2 variants are discussed. Finally, the advantages, perspectives and challenges of coinage metal nanoparticles are given to fight against viral infections in the future.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| |
Collapse
|