1
|
Schneider JJ, Galettis P, Martin JH. Overcoming barriers to implementing precision dosing with 5-fluorouracil and capecitabine. Br J Clin Pharmacol 2021; 87:317-325. [PMID: 33386659 DOI: 10.1111/bcp.14723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in targeted cancer therapy, the fluoropyrimidines 5-fluorouracil (5FU) and capecitabine continue to play an important role in oncology. Historically, dosing of these drugs has been based on body surface area. This approach has been demonstrated to be an imprecise way to determine the optimal dose for a patient. Evidence in the literature has demonstrated that precision dosing approaches, such as DPD enzyme activity testing and, in the case of intravenous 5FU, pharmacokinetic-guided dosing, can reduce toxicity and yield better patient outcomes. However, despite the evidence, there has not been uniform adoption of these approaches in the clinical setting. When a drug such as 5FU has been used clinically for many decades, it may be difficult to change clinical practice. With the aim of facilitating change of practice, issues and barriers to implementing precision dosing approaches for 5FU and capecitabine are identified and discussed with possible solutions proposed.
Collapse
Affiliation(s)
- Jennifer J Schneider
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| | - Peter Galettis
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| | - Jennifer H Martin
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Level 3 Hunter Medical Research Institute, Kookaburra Circuit, Newcastle, New South Wales, Australia
| |
Collapse
|
2
|
Beumer JH, Chu E, Allegra C, Tanigawara Y, Milano G, Diasio R, Kim TW, Mathijssen RH, Zhang L, Arnold D, Muneoka K, Boku N, Joerger M. Therapeutic Drug Monitoring in Oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology Recommendations for 5-Fluorouracil Therapy. Clin Pharmacol Ther 2019; 105:598-613. [PMID: 29923599 PMCID: PMC6309286 DOI: 10.1002/cpt.1124] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
5-Fluorouracil (5-FU) is dosed by body surface area, a practice unable to reduce the interindividual variability in exposure. Endorsed by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), we evaluated clinical evidence and strongly recommend TDM for the management of 5-FU therapy in patients with colorectal or head-and-neck cancer receiving common 5-FU regimens. Our systematic methodology provides a framework to evaluate published evidence in support of TDM recommendations in oncology.
Collapse
Affiliation(s)
- Jan H. Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edward Chu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Yusuke Tanigawara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, Tokyo, Japan
| | - Gerard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, Nice, France
| | - Robert Diasio
- Developmental Therapeutics Program, Mayo Clinic Cancer Center, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Tae Won Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ron H. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dirk Arnold
- Department of Oncology, AK Altona, Asklepios Tumorzentrum Hamburg, Hamburg, Germany
| | - Katsuki Muneoka
- Division of Oncology Center, Niitsu Medical Center Hospital, Niigata City, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
3
|
Etienne-Grimaldi MC, Boyer JC, Beroud C, Mbatchi L, van Kuilenburg A, Bobin-Dubigeon C, Thomas F, Chatelut E, Merlin JL, Pinguet F, Ferrand C, Meijer J, Evrard A, Llorca L, Romieu G, Follana P, Bachelot T, Chaigneau L, Pivot X, Dieras V, Largillier R, Mousseau M, Goncalves A, Roché H, Bonneterre J, Servent V, Dohollou N, Château Y, Chamorey E, Desvignes JP, Salgado D, Ferrero JM, Milano G. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One 2017; 12:e0175998. [PMID: 28481884 PMCID: PMC5421769 DOI: 10.1371/journal.pone.0175998] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Deficiency in dihydropyrimidine dehydrogenase (DPD) enzyme is the main cause of severe and lethal fluoropyrimidine-related toxicity. Various approaches have been developed for DPD-deficiency screening, including DPYD genotyping and phenotyping. The goal of this prospective observational study was to perform exhaustive exome DPYD sequencing and to examine relationships between DPYD variants and toxicity in advanced breast cancer patients receiving capecitabine. Methods Two-hundred forty-three patients were analysed (88.5% capecitabine monotherapy). Grade 3 and grade 4 capecitabine-related digestive and/or neurologic and/or hemato-toxicities were observed in 10.3% and 2.1% of patients, respectively. DPYD exome, along with flanking intronic regions 3’UTR and 5’UTR, were sequenced on MiSeq Illumina. DPD phenotype was assessed by pre-treatment plasma uracil (U) and dihydrouracil (UH2) measurement. Results Among the 48 SNPs identified, 19 were located in coding regions, including 3 novel variations, each observed in a single patient (among which, F100L and A26T, both pathogenic in silico). Combined analysis of deleterious variants *2A, I560S (*13) and D949V showed significant association with grade 3–4 toxicity (sensitivity 16.7%, positive predictive value (PPV) 71.4%, relative risk (RR) 6.7, p<0.001) but not with grade 4 toxicity. Considering additional deleterious coding variants D342G, S492L, R592W and F100L increased the sensitivity to 26.7% for grade 3–4 toxicity (PPV 72.7%, RR 7.6, p<0.001), and was significantly associated with grade 4 toxicity (sensitivity 60%, PPV 27.3%, RR 31.4, p = 0.001), suggesting the clinical relevance of extended targeted DPYD genotyping. As compared to extended genotype, combining genotyping (7 variants) and phenotyping (U>16 ng/ml) did not substantially increase the sensitivity, while impairing PPV and RR. Conclusions Exploring an extended set of deleterious DPYD variants improves the performance of DPYD genotyping for predicting both grade 3–4 and grade 4 toxicities (digestive and/or neurologic and/or hematotoxicities) related to capecitabine, as compared to conventional genotyping restricted to consensual variants *2A, *13 and D949V.
Collapse
Affiliation(s)
| | | | - Christophe Beroud
- Aix-Marseille University, INSERM UMR S910, GMGF, Marseille, France
- APHM Hôpital Timone, Laboratoire de Génétique Moléculaire, Marseille, France
| | - Litaty Mbatchi
- Faculté de Pharmacie de Montpellier, Montpellier, France
| | - André van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam,The Netherlands
| | | | - Fabienne Thomas
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Etienne Chatelut
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, UMR CNRS 7039 CRAN, Université de Lorraine, Nancy, France
| | | | | | - Judith Meijer
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam,The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | - Henri Roché
- Institut Claudius-Regaud, CRCT, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | | | | | | | | | | | - David Salgado
- Aix-Marseille University, INSERM UMR S910, GMGF, Marseille, France
| | | | | |
Collapse
|
4
|
Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol 2016; 78:447-64. [PMID: 27217046 DOI: 10.1007/s00280-016-3054-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/03/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE For over 50 years, 5-FU has played a critical role in the systemic chemotherapy of cancer patients. 5-FU serves as the main backbone of combination chemotherapy for patients with colorectal cancer in both the adjuvant and metastatic disease settings. Herein, we review the current status of 5-FU therapeutic drug monitoring (TDM) and discuss its potential role in the clinical practice setting. METHOD PubMed and abstracts from the American Society of Clinical Oncology were searched up through September 2015 for clinical data relating to 5-FU TDM. RESULTS 5-FU dosing has been typically determined by using body surface area (BSA). However, it is now well established that BSA-based 5-FU dosing is correlated with a wide variation of 5-FU systemic exposure. Pharmacokinetic (PK) studies of 5-FU systemic exposure have shown a wide range of interpatient variation of 5-FU plasma drug levels. Over the past 30 years, increasing efforts have been placed on optimizing 5-FU dosing with the main goals of increasing antitumor efficacy while reducing drug-associated toxicity. There is growing evidence to show that 5-FU dosing based on plasma 5-FU drug level is feasible and that 5-FU TDM can improve clinical outcomes by improving efficacy of 5-FU-based combination regimens and reducing toxicities. CONCLUSION Dose adjustment of 5-FU is feasible, and PK-based dosing can significantly improve clinical outcomes by reducing toxicities and improving efficacy.
Collapse
|
5
|
Amann A, Corradi M, Mazzone P, Mutti A. Lung cancer biomarkers in exhaled breath. Expert Rev Mol Diagn 2014; 11:207-17. [DOI: 10.1586/erm.10.112] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Amann A, Miekisch W, Schubert J, Buszewski B, Ligor T, Jezierski T, Pleil J, Risby T. Analysis of exhaled breath for disease detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:455-482. [PMID: 25014347 DOI: 10.1146/annurev-anchem-071213-020043] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.
Collapse
Affiliation(s)
- Anton Amann
- Breath Research Institute of the University of Innsbruck, A-6850 Dornbirn, Austria;
| | | | | | | | | | | | | | | |
Collapse
|
7
|
13C-uracil breath test to predict 5-fluorouracil toxicity in gastrointestinal cancer patients. Cancer Chemother Pharmacol 2013; 72:1273-82. [DOI: 10.1007/s00280-013-2309-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022]
|
8
|
Modak AS. An Update on 13C-Breath Tests: The Transition to Acceptability into Clinical Practice. VOLATILE BIOMARKERS 2013:244-262. [DOI: 10.1016/b978-0-44-462613-4.00014-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Hornuss C, Zagler A, Dolch ME, Wiepcke D, Praun S, Boulesteix AL, Weis F, Apfel CC, Schelling G. Breath isoprene concentrations in persons undergoing general anesthesia and in healthy volunteers. J Breath Res 2012; 6:046004. [PMID: 23151715 DOI: 10.1088/1752-7155/6/4/046004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human breath contains an abundance of volatile organic compounds (VOCs). Analysis of breath VOC may be used for diagnosis of various diseases or for on-line monitoring in anesthesia and intensive care. However, VOC concentrations largely depend on the breath sampling method and have a large inter-individual variability. For the development of breath tests, the influence of breath sampling methods and study subject characteristics on VOC concentrations has to be known. Therefore, we investigated the VOC isoprene in 62 study subjects during anesthesia and 16 spontaneously breathing healthy volunteers to determine (a) the influence of artificial and spontaneous ventilation and (b) the influence of study subject characteristics on breath isoprene concentrations. We used ion molecule reaction mass spectrometry for high-resolution breath-by-breath analysis of isoprene. We found that persons during anesthesia had significantly increased inspiratory and end-expiratory isoprene breath concentrations. Measured isoprene concentrations (median [first quartile-third quartile]) were in the anesthesia group: 54 [40-79] ppb (inspiratory) and 224 [171-309] ppb (end-expiratory), volunteer group: 14 [11-17] ppb (inspiratory) and 174 [124-202] ppb (end-expiratory). Higher end-tidal CO(2) concentrations in ventilated subjects were associated with higher expiratory isoprene levels. Furthermore, inspiratory and end-expiratory isoprene concentrations were correlated during anesthesia (r = 0.603, p < 0.001). Multivariate analysis showed that men had significantly higher end-expiratory isoprene concentrations than women. Rebreathing of isoprene from the anesthesia machine possibly accounts for the observed increase in isoprene in the anesthesia group.
Collapse
Affiliation(s)
- Cyrill Hornuss
- Department of Anaesthesiology, Klinikum der Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Luque de Castro M, Fernández-Peralbo M. Analytical methods based on exhaled breath for early detection of lung cancer. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Analysis of exhaled breath for screening of lung cancer patients. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2010. [DOI: 10.1007/s12254-010-0219-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|