1
|
Harshman SW, Jung AE, Strayer KE, Alfred BL, Mattamana J, Veigl AR, Dash AI, Salter CE, Stoner-Dixon MA, Kelly JT, Davidson CN, Pitsch RL, Martin JA. Investigation of an individual with background levels of exhaled isoprene: a case study. J Breath Res 2023; 17. [PMID: 36596256 DOI: 10.1088/1752-7163/acaf98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Isoprene is one of the most abundant and most frequently evaluated volatile organic compounds in exhaled breath. Recently, several individuals with background levels of exhaled isoprene have been identified. Here, case study data are provided for an individual, identified from a previous study, with this low prevalence phenotype. It is hypothesized that the individual will illustrate low levels of exhaled isoprene at rest and during exercise. At rest, the subject (7.1 ppb) shows background (μ= 14.2 ± 7.0 ppb) levels of exhaled isoprene while the control group illustrates significantly higher quantities (μ= 266.2 ± 72.3 ppb) via proton transfer reaction mass spectrometry (PTR-MS). The result, background levels of isoprene at rest, is verified by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) collections with the individual showing -3.6 ppb exhaled isoprene while the room background containedμ= -4.1 ± 0.1 ppb isoprene. As isoprene has been shown previously to increase at the initiation of exercise, exercise bike experiments were performed with the individual identified with low isoprene, yielding low and invariant levels of exhaled isoprene (μ= 6.6 ± 0.1 ppb) during the exercise while control subjects illustrated an approximate 2.5-fold increase (preμ= 286.3 ± 43.8 ppb, exerciseμ= 573.0 ± 147.8 ppb) in exhaled isoprene upon exercise start. Additionally, exhaled breath bag data showed a significant decrease in isoprene (delta post/pre, p = 0.0078) of the control group following the exercise regimen. Finally, TD-GC-MS results for exhaled isoprene from the individual's family (mother, father, sister and maternal grandmother) illustrated that the mother and father exhibited isoprene values (28.5 ppb, 77.2 ppb) below control samples 95% confidence interval (μ= 166.8 ± 43.3 ppb) while the individual's sister (182.0 ppb) was within the control range. These data provide evidence for a large dynamic range in exhaled isoprene in this family. Collectively, these results provide additional data surrounding the existence of a small population of individuals with background levels of exhaled isoprene.
Collapse
Affiliation(s)
- Sean W Harshman
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Anne E Jung
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Kraig E Strayer
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Bryan L Alfred
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - John Mattamana
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Alena R Veigl
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Aubrianne I Dash
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Charles E Salter
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Madison A Stoner-Dixon
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - John T Kelly
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Rhonda L Pitsch
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | - Jennifer A Martin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2977 Hobson Way, Area B, Building 653, Wright-Patterson AFB, OH 45433, United States of America
| |
Collapse
|
2
|
Matsushima M, Tanihata S, Kusakabe J, Okahira M, Ito H, Yamamoto A, Yamamoto M, Yamamoto R, Kawabe T. Correlation of theophylline levels in rat exhaled breath and lung tissue after its intravenous injection. J Breath Res 2022; 16. [PMID: 35483336 DOI: 10.1088/1752-7163/ac6b4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
It is important to know the drug level in the target tissue to determine its dose. Some methods rely on blood levels of a drug to estimate its concentration in the tissues, which can be inaccurate. We thought that drug levels in exhaled breath aerosol (EBA) to give a more accurate value of the level of a test drug in the lung. Rats were intravenously injected with the bronchodilator theophylline and exhaled breath was collected up to 10-20 min after administration. Immediately after breath collection, lung, liver, kidney, and blood were collected and the pharmacokinetics were examined using these samples. Awake free-moving rats were used to efficiently collect exhaled breath from rats with low tidal volume. The amount of exhaled breath of rats was estimated by the amount of exhaled water vapor, and the drug concentration in exhaled breath sample was expressed by the amount of water vapor as the denominator. By using the active sampling method in which the adsorbent is sucked by a pump, theophylline in rat exhaled breath could be measured accurately. When the correlation of theophylline concentration in each sample was examined, a high correlation (r2= 0.74) was found only in exhaled breath and lung tissue. EBA was considered better than blood in pharmacokinetic analysis of lung tissue.
Collapse
Affiliation(s)
- Miyoko Matsushima
- Graduate School of Medicine, Nagoya Univerisity, 1-20 Daikou-minami 1-chome, Higashi-ku, Nagoya, 461-8673, JAPAN
| | - Souma Tanihata
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Junpei Kusakabe
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Momoha Okahira
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Hiroshi Ito
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Atsushi Yamamoto
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Kasugai, 487-8501, JAPAN
| | - Masanori Yamamoto
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Ryohei Yamamoto
- Chubu University School of Bioscience and Biotechnology Graduate School of Bioscience and Biotechnology, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, JAPAN
| | - Tsutomu Kawabe
- Graduate School of Medicine, Nagoya Univerisity, 1-20 Daikou-minami 1-chome, Higashi-ku, Nagoya, 461-8673, JAPAN
| |
Collapse
|
3
|
Fuchs P, Trautner M, Saß R, Kamysek S, Miekisch W, Bier A, Stoll P, Schubert JK. Spatial mapping of VOC exhalation by means of bronchoscopic sampling. J Breath Res 2020; 14:046012. [PMID: 33021213 DOI: 10.1088/1752-7163/abb478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Breath analysis holds promise for non-invasive in vivo monitoring of disease related processes. However, physiological parameters may considerably affect profiles of exhaled volatile organic substances (VOCs). Volatile substances can be released via alveoli, bronchial mucosa or from the upper airways. The aim of this study was the systematic investigation of the influence of different sampling sites in the respiratory tract on VOC concentration profiles by means of a novel experimental setup. After ethical approval, breath samples were collected from 25 patients undergoing bronchoscopy for endobronchial ultrasound or bronchoscopic lung volume reduction from different sites in the airways. All patients had total intravenous anaesthesia under pressure-controlled ventilation. If necessary, respiratory parameters were adjusted to keep PETCO2 = 35-45 mm Hg. 30 ml gas were withdrawn at six sampling sites by means of gastight glass syringes: S1 = Room air, S2 = Inspiration, S3 = Endotracheal tube, S4 = Trachea, S5 = Right B6 segment, S6 = Left B6 segment (S4-S6 through the bronchoscope channel). 10 ml were used for VOC analysis, 20 ml for PCO2 determination. Samples were preconcentrated by solid-phase micro-extraction (SPME) and analysed by gas chromatography-mass spectrometry (GC-MS). PCO2 was determined in a conventional blood gas analyser. Statistically significant differences in substance concentrations for acetone, isoprene, 2-methyl-pentane and n-hexane could be observed between different sampling sites. Increasing substance concentrations were determined for acetone (15.3%), 2-methyl-pentane (11.4%) and n-hexane (19.3%) when passing from distal to proximal sampling sites. In contrast, isoprene concentrations decreased by 9.9% from proximal to more distal sampling sites. Blank bronchoscope measurements did not show any contaminations. Increased substance concentrations in the proximal respiratory tract may be explained through substance excretion from bronchial mucosa while decreased concentrations could result from absorption or reaction processes. Spatial mapping of VOC profiles can provide novel insights into substance specific exhalation kinetics and mechanisms.
Collapse
Affiliation(s)
- Patricia Fuchs
- Department of Anaesthesiology and Intensive Care Medicine, Rostock University Medical Centre, ROMBAT, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Harshman SW, Pitsch RL, Davidson CN, Lee EM, Scott AM, Hill EM, Mainali P, Brooks ZE, Strayer KE, Schaeublin NM, Wiens TL, Brothers MC, Drummond LA, Yamamoto DP, Martin JA. Evaluation of a standardized collection device for exhaled breath sampling onto thermal desorption tubes. J Breath Res 2020; 14:036004. [PMID: 32155613 DOI: 10.1088/1752-7163/ab7e3b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Respiration Collector for In Vitro Analysis (ReCIVA) sampler, marketed by Owlstone Medical, provides a step forward in exhaled breath sampling through active sampling directly onto thermal desorption (TD) tubes. Although an improvement to the issues surrounding breath bag sampling, the ReCIVA device, first released in 2015, is a relatively new research and clinical tool that requires further exploration. Here, data are presented comparing two distinct ReCIVA devices. The results, comparing ReCIVA serial numbers #33 and #65, demonstrate that overall statistically insignificant results are obtained via targeted isoprene quantitation (p > 0.05). However, when the data are parsed by the TD tube type used to capture breath volatiles, either Tenax TA or the dual bed Tenax/Carbograph 5TD (5TD), a statistical difference (p < 0.05) among the two different TD tubes was present. These data, comparing the two ReCIVA devices with both Tenax TA and 5TD tubes, are further supported by a global metabolomics analysis yielding 85% of z-scores, comparing ReCIVA devices, below the limit for significance. Experiments to determine the effect of breathing rate on ReCIVA function, using guided breathing for low (7.5 breaths min-1) and high (15 breaths min-1) breathing rates, demonstrate the ReCIVA device shows no statistical difference among breathing rates for quantitated isoprene (p > 0.05). Global metabolomics analysis of the guided breathing rate data shows more than 87% of the z-scores, comparing high and low breathing rates using both the Tenax and the 5TD tubes, are below the level for significance. Finally, data are provided from a single participant who displayed background levels of isoprene while illustrating levels of acetone consistent with the remaining participants. Collectively, these data support the use of multiple ReCIVA devices for exhaled breath collection and provide evidence for an instance where exhaled isoprene is consistent with background levels.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBB, 2510 Fifth Street, Area B, Building 840, Wright-Patterson Air Force Base, OH 45433, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Harshman SW, Pitsch RL, Davidson CN, Scott AM, Hill EM, Smith ZK, Strayer KE, Schaeublin NM, Wiens TL, Brothers MC, Slusher GM, Steele ML, Geier BA, Fan M, Drummond LA, Martin JA. Characterization of standardized breath sampling for off-line field use. J Breath Res 2019; 14:016009. [PMID: 31703231 DOI: 10.1088/1752-7163/ab55c5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Due to several sources of potential variability associated with exhaled breath bag sampling procedures for off-line analysis, the Respiration Collector for in vitro Analysis (ReCIVA) sampler was developed. Although designed to improve upon several pitfalls of sampling with exhaled breath bags, the ReCIVA remains a minimally studied research tool. In this manuscript, several attributes of the ReCIVA sampler are investigated among three individual tests, such as background contamination, control software version, performance of different adsorbent tubes, duplicate sample production, and comparison to exhaled breath bags. The data shows greater than a 58% reduction in background siloxanes can be achieved with submersion of ReCIVA masks in ethyl alcohol or baking the masks at a high temperature (200 °C). The results illustrate the ReCIVA control software version plays a key role in the flow rates applied to thermal desorption (TD) tubes. Using exhaled isoprene as a representative analyte, the data suggest duplicate samples among ReCIVA pump banks can be achieved using two different thermal desorption tubes, Tenax TA and Tenax/Carbograph 5TD, when using an updated control software and manually calibrating the ReCIVA pumps to uniform flow rates (Tenax p = 0.3869, 5TD p = 0.3131). Additionally, using the updated control software and manual ReCIVA flow calibration, the data suggest the ReCIVA can produce statistically similar results among TD tube types (p = 0.3824) and compared to standard exhaled breath bags (p = 0.1534). Collectively, these results establish a method for manually calibrating the flow of the ReCIVA device to allow for the most consistent results. These data support further experimentation into the use of the ReCIVA sampler for exhaled breath research.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHXBC, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Harshman SW, Geier BA, Qualley AV, Drummond LA, Flory LE, Fan M, Pitsch RL, Grigsby CC, Phillips JB, Martin JA. Exhaled isoprene for monitoring recovery from acute hypoxic stress. J Breath Res 2017; 11:047111. [DOI: 10.1088/1752-7163/aa927d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Stringer KA, McKay RT, Karnovsky A, Quémerais B, Lacy P. Metabolomics and Its Application to Acute Lung Diseases. Front Immunol 2016; 7:44. [PMID: 26973643 PMCID: PMC4770032 DOI: 10.3389/fimmu.2016.00044] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
Metabolomics is a rapidly expanding field of systems biology that is gaining significant attention in many areas of biomedical research. Also known as metabonomics, it comprises the analysis of all small molecules or metabolites that are present within an organism or a specific compartment of the body. Metabolite detection and quantification provide a valuable addition to genomics and proteomics and give unique insights into metabolic changes that occur in tangent to alterations in gene and protein activity that are associated with disease. As a novel approach to understanding disease, metabolomics provides a "snapshot" in time of all metabolites present in a biological sample such as whole blood, plasma, serum, urine, and many other specimens that may be obtained from either patients or experimental models. In this article, we review the burgeoning field of metabolomics in its application to acute lung diseases, specifically pneumonia and acute respiratory disease syndrome (ARDS). We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized environmental toxins. Recent reports have suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe disease, such as sepsis, which kills many patients each year. In addition, metabolomics may provide more detailed phenotyping of patient heterogeneity, which is needed to achieve the goal of precision medicine. However, although several experimental and clinical metabolomics studies have been conducted assessing the application of the science to acute lung diseases, only incremental progress has been made. Specifically, little is known about the metabolic phenotypes of these illnesses. These data are needed to substantiate metabolomics biomarker credentials so that clinicians can employ them for clinical decision-making and investigators can use them to design clinical trials.
Collapse
Affiliation(s)
- Kathleen A. Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Perez-Guaita D, Kokoric V, Wilk A, Garrigues S, Mizaikoff B. Towards the determination of isoprene in human breath using substrate-integrated hollow waveguide mid-infrared sensors. J Breath Res 2014; 8:026003. [PMID: 24848160 DOI: 10.1088/1752-7155/8/2/026003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selected volatile organic compounds (VOCs) in breath may be considered biomarkers if they are indicative of distinct diseases or disease states. Given the inherent molecular selectivity of vibrational spectroscopy, infrared sensing technologies appear ideally suitable for the determination of endogenous VOCs in breath. The aim of this study was to determine that mid-infrared (MIR; 3-20 µm) gas phase sensing is capable of determining isoprene in exhaled breath as an exemplary medically relevant VOC by hyphenating novel substrate-integrated hollow waveguides (iHWG) with a likewise miniaturized preconcentration system. A compact preconcentrator column for sampling isoprene from exhaled breath was coupled to an iHWG serving simultaneously as highly miniaturized gas cell and light conduit in combination with a compact Fourier transform infrared spectrometer. A gas mixing system enabled extensive system calibration using isoprene standards. After system optimization, a calibration function obtaining a limit of quantification of 106 ppb was achieved. According to the literature, the obtained sensitivity is sufficient for quantifying middle to high isoprene concentrations occurring in exhaled breath. Finally, a volunteer breath sample was analysed proving comparable values of isoprene in a real-world scenario. Despite its fundamental utility, the proposed methodology contains some limitations in terms of sensitivity and temporal resolution in comparison with the readily available measurement techniques that should be addressed during future optimization of the system. Nonetheless, this study presents the first determination of endogenous VOCs in breath via advanced hollow waveguide MIR sensor technology, clearly demonstrating its potential for the analysis of volatile biomarkers in exhaled breath.
Collapse
Affiliation(s)
- David Perez-Guaita
- Analytical Chemistry Department, University of Valencia, EdificiJeroni Muñoz, Burjassot, Spain
| | | | | | | | | |
Collapse
|
9
|
Smith D, Španěl P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res 2014; 8:027101. [PMID: 24682047 DOI: 10.1088/1752-7155/8/2/027101] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Hornuss C, Dolch ME, Janitza S, Souza K, Praun S, Apfel CC, Schelling G. Determination of breath isoprene allows the identification of the expiratory fraction of the propofol breath signal during real-time propofol breath monitoring. J Clin Monit Comput 2013; 27:509-16. [PMID: 23525901 DOI: 10.1007/s10877-013-9452-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/08/2013] [Indexed: 12/18/2022]
Abstract
Real-time measurement of propofol in the breath may be used for routine clinical monitoring. However, this requires unequivocal identification of the expiratory phase of the respiratory propofol signal as only expiratory propofol reflects propofol blood concentrations. Determination of CO2 breath concentrations is the current gold standard for the identification of expiratory gas but usually requires additional equipment. Human breath also contains isoprene, a volatile organic compound with low inspiratory breath concentration and an expiratory concentration plateau. We investigated whether breath isoprene could be used similarly to CO2 to identify the expiratory fraction of the propofol breath signal. We investigated real-time breath data obtained from 40 study subjects during routine anesthesia. Propofol, isoprene, and CO2 breath concentrations were determined by a combined ion molecule reaction/electron impact mass spectrometry system. The expiratory propofol signal was identified according to breath CO2 and isoprene concentrations and presented as median of intervals of 30 s duration. Bland-Altman analysis was applied to detect differences (bias) in the expiratory propofol signal extracted by the two identification methods. We investigated propofol signals in a total of 3,590 observation intervals of 30 s duration in the 40 study subjects. In 51.4 % of the intervals (1,844/3,590) both methods extracted the same results for expiratory propofol signal. Overall bias between the two data extraction methods was -0.12 ppb. The lower and the upper limits of the 95 % CI were -0.69 and 0.45 ppb. Determination of isoprene breath concentrations allows the identification of the expiratory propofol signal during real-time breath monitoring.
Collapse
Affiliation(s)
- Cyrill Hornuss
- Department of Anaesthesiology, Klinikum der Universität München, Marchioninistr. 15, 81377, Munich, Germany,
| | | | | | | | | | | | | |
Collapse
|