1
|
Ramachandran T, Ali A, Butt H, Zheng L, Deader FA, Rezeq M. Gold on the horizon: unveiling the chemistry, applications and future prospects of 2D monolayers of gold nanoparticles (Au-NPs). NANOSCALE ADVANCES 2024; 6:d4na00666f. [PMID: 39450415 PMCID: PMC11495494 DOI: 10.1039/d4na00666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Noble 2D monolayers of gold nanoparticles (Au-NPs) have garnered significant attention due to their unique physicochemical properties, which are instrumental in various technological applications. This review delves into the intricate physical chemistry underlying the formation of Au-NP monolayers, highlighting key interactions such as electrostatic forces, van der Waals attractions, and ligand-mediated stabilization. The discussion extends to the size- and shape-dependent assembly processes of these NP monolayers, elucidating how nanoparticle dimensions and morphologies influence monolayer formation and stability. Moreover, the review explores the diverse interfaces-solid, liquid, and air-where Au-NP monolayers are employed, each presenting distinct advantages and challenges. In the realm of applications, Au-NP monolayers have shown remarkable promises. In memory devices, their ability to facilitate high-density data storage through enhanced electron transport mechanisms is examined. Biosensing applications benefit from the monolayers' exceptional sensitivity and specificity, which are crucial for detecting biomolecular interactions. Furthermore, the role of Au-NP monolayers in electrocatalysis is explored, with a focus on their catalytic efficiency and stability in various electrochemical reactions. Despite their potential, the deployment of Au-NP monolayers faces several challenges. The review addresses current limitations such as scalability, reproducibility, and long-term stability, proposing potential strategies to overcome these hurdles. Future prospects are also discussed, including the development of multifunctional monolayers and integration with other nanomaterials to enhance performance across different applications. In conclusion, while significant strides have been made in understanding and utilizing 2D Au-NP monolayers, ongoing research is imperative to fully exploit their capabilities. Addressing existing challenges through innovative approaches will pave the way for their widespread adoption in advanced technological applications.
Collapse
Affiliation(s)
- Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Ashraf Ali
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Haider Butt
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Lianxi Zheng
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Firdous Ahmad Deader
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Moh'd Rezeq
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
- System on Chip Lab (SoCL), Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| |
Collapse
|
2
|
Song L, Huang Y, Nie Z, Chen T. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. NANOSCALE 2020; 12:7433-7460. [PMID: 32219290 DOI: 10.1039/c9nr09420b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last few decades, two-dimensional monolayer films of gold nanoparticles (2D MFGS) have attracted increasing attention in various fields, due to their superior attributes of macroscopic size and accessible fabrication, controllable electromagnetic enhancement, distinctive optical harvesting and electron transport capabilities. This review will focus on the recent progress of 2D monolayer films of gold nanoparticles in construction approaches, surface engineering strategies and functional applications in the optical and electric fields. The research challenges and prospective directions of 2D MFGS are also discussed. This review would promote a better understanding of 2D MFGS and establish a necessary bridge among the multidisciplinary research fields.
Collapse
Affiliation(s)
- Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China. and College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China and National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
3
|
Malásková M, Henderson B, Chellayah PD, Ruzsanyi V, Mochalski P, Cristescu SM, Mayhew CA. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. J Breath Res 2019; 13:046009. [PMID: 31163413 DOI: 10.1088/1752-7163/ab26e2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the growing interest in the use of breath volatiles in the health sciences, the lack of standardization for the sampling and analysis of exhaled breath is becoming a major issue leading to an absence of conformity, reproducibility and reliability in spectrometric measurements. Through the creation of a worldwide 'peppermint consortium', the International Association of Breath Research has set up a task force to deal with this problem. Pharmacokinetic studies are proposed, and a real-time analytical technique that is being used is proton transfer reaction-time-of-flight-mass spectrometry (PTR-ToF-MS). This paper presents details on how the volatile compounds contained in a peppermint oil capsule, and hence on breath, appear in a PTR-ToF-MS. To aid that study, the key volatiles in the headspace of peppermint oil were first identified using gas chromatography-mass spectrometry, notably: menthol, menthone, 1,8-cineole, menthofuran, limonene, α-pinene and β-pinene. A PTR-ToF-MS analysis of these compounds has been undertaken, divorced from the complexity of the peppermint oil matrix using 'normal' and 'saturated' humidity drift-tube conditions, with the latter used to mimic breath samples, and over a range of reduced electric fields. There are no characteristic product ions that can distinguish monoterpenes and 1,8-cineole, and hence, without pre-separation, a combined washout for these volatiles can only be provided. By operating the drift tube above about 130 Td, there are characteristic product ions for menthone, menthofuran and menthol, namely m/z 155.14 (protonated menthone), m/z 151.11 (protonated menthofuran), m/z 139.15 (loss of H2O from protonated menthol) and m/z 83.09 (a fragment ion, C6H11 +, from menthol). These have been used to monitor, with a high specificity, the temporal profile of these three compounds in breath following the ingestion of a peppermint oil capsule. To aid in the analyses, the proton affinities and gas-phase basicities for the key volatiles investigated have been determined using density functional theory.
Collapse
Affiliation(s)
- Michaela Malásková
- Institute for Breath Research, Leopold-Franzens-Universität Innsbruck, Rathausplatz 4, A-6850, Dornbirn, Austria
| | | | | | | | | | | | | |
Collapse
|
4
|
Liu N, Koot A, Hettinga K, de Jong J, van Ruth SM. Portraying and tracing the impact of different production systems on the volatile organic compound composition of milk by PTR-(Quad)MS and PTR-(ToF)MS. Food Chem 2018; 239:201-207. [DOI: 10.1016/j.foodchem.2017.06.099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/13/2023]
|
5
|
Kistler M, Muntean A, Höllriegl V, Matuschek G, Zimmermann R, Hoeschen C, de Angelis MH, Rozman J. A systemic view on the distribution of diet-derived methanol and hepatic acetone in mice. J Breath Res 2017; 12:017102. [DOI: 10.1088/1752-7163/aa8a15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Ruzsányi V, Péter Kalapos M. Breath acetone as a potential marker in clinical practice. J Breath Res 2017; 11:024002. [DOI: 10.1088/1752-7163/aa66d3] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Das S, Pal S, Mitra M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J Med Biol Eng 2016; 36:605-624. [PMID: 27853412 PMCID: PMC5083779 DOI: 10.1007/s40846-016-0164-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Analysis of volatile organic compounds (VOCs) emanating from human exhaled breath can provide deep insight into the status of various biochemical processes in the human body. VOCs can serve as potential biomarkers of physiological and pathophysiological conditions related to several diseases. Breath VOC analysis, a noninvasive and quick biomonitoring approach, also has potential for the early detection and progress monitoring of several diseases. This paper gives an overview of the major VOCs present in human exhaled breath, possible biochemical pathways of breath VOC generation, diagnostic importance of their analysis, and analytical techniques used in the breath test. Breath analysis relating to diabetes mellitus and its characteristic breath biomarkers is focused on. Finally, some challenges and limitations of the breath test are discussed.
Collapse
Affiliation(s)
- Souvik Das
- Department of Biomedical Engineering, JIS College of Engineering, Kalyani, West Bengal 741235 India
| | - Saurabh Pal
- Department of Applied Physics, University of Calcutta, Kolkata, West Bengal 700009 India
| | - Madhuchhanda Mitra
- Department of Applied Physics, University of Calcutta, Kolkata, West Bengal 700009 India
| |
Collapse
|
8
|
Broza YY, Mochalski P, Ruzsanyi V, Amann A, Haick H. Hybrid volatolomics and disease detection. Angew Chem Int Ed Engl 2015; 54:11036-48. [PMID: 26235374 DOI: 10.1002/anie.201500153] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 02/06/2023]
Abstract
This Review presents a concise, but not exhaustive, didactic overview of some of the main concepts and approaches related to "volatolomics"-an emerging frontier for fast, risk-free, and potentially inexpensive diagnostics. It attempts to review the source and characteristics of volatolomics through the so-called volatile organic compounds (VOCs) emanating from cells and their microenvironment. It also reviews the existence of VOCs in several bodily fluids, including the cellular environment, blood, breath, skin, feces, urine, and saliva. Finally, the usefulness of volatolomics for diagnosis from a single bodily fluid, as well as ways to improve these diagnostic aspects by "hybrid" approaches that combine VOC profiles collected from two or more bodily fluids, will be discussed. The perspectives of this approach in developing the field of diagnostics to a new level are highlighted.
Collapse
Affiliation(s)
- Yoav Y Broza
- The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003 (Israel)
| | - Pawel Mochalski
- Breath Research Institute and University-Clinic for Anesthesia, The University of Innsbruck and Innsbruck Medical University, Innsbruck (Austria)
| | - Vera Ruzsanyi
- Breath Research Institute and University-Clinic for Anesthesia, The University of Innsbruck and Innsbruck Medical University, Innsbruck (Austria)
| | - Anton Amann
- Breath Research Institute and University-Clinic for Anesthesia, The University of Innsbruck and Innsbruck Medical University, Innsbruck (Austria)
| | - Hossam Haick
- The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003 (Israel).
| |
Collapse
|
9
|
Broza YY, Mochalski P, Ruzsanyi V, Amann A, Haick H. Hybride Volatolomik und der Nachweis von Krankheiten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|