1
|
Abstract
This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 μL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.
Collapse
Affiliation(s)
- David C Duffy
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
2
|
Alexandre L, Bendali A, Pereiro I, Azimani M, Dumas S, Malaquin L, Mai TD, Descroix S. Modular microfluidic system for on-chip extraction, preconcentration and detection of the cytokine biomarker IL-6 in biofluid. Sci Rep 2022; 12:9468. [PMID: 35676309 PMCID: PMC9176165 DOI: 10.1038/s41598-022-13304-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The cytokine interleukin 6 (IL-6) is involved in the pathogenesis of different inflammatory diseases, including cancer, and its monitoring could help diagnosis, prognosis of relapse-free survival and recurrence. Here, we report an innovative microfluidic approach that uses the fluidization of magnetic beads to specifically extract, preconcentrate and fluorescently detect IL-6 directly on-chip. We assess how the physical properties of the beads can be tuned to improve assay performance by enhancing mass transport, reduce non-specific binding and multiply the detection signal threefold by transitioning between packed and fluidization states. With the integration of a full ELISA protocol in a single microfluidic chamber, we show a twofold reduction in LOD compared to conventional methods along with a large dynamic range (10 pg/mL to 2 ng/mL). We additionally demonstrate its application to IL-6 detection in undiluted serum samples.
Collapse
|
3
|
Liu Y, Lin G, Chen Y, Mönch I, Makarov D, Walsh BJ, Jin D. Coding and decoding stray magnetic fields for multiplexing kinetic bioassay platform. LAB ON A CHIP 2020; 20:4561-4571. [PMID: 33146648 DOI: 10.1039/d0lc00848f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymer microspheres can be fluorescently-coded for multiplexing molecular analysis, but their usage has been limited by fluorescent quenching and bleaching and crowded spectral domain with issues of cross-talks and background interference. Each bioassay step of mixing and separation of analytes and reagents require off-line particle handling procedures. Here, we report that stray magnetic fields can code and decode a collection of hierarchically-assembled beads. By the microfluidic assembling of mesoscopic superparamagnetic cores, diverse and non-volatile stray magnetic field response can be built in the series of microscopic spheres, dumbbells, pears, chains and triangles. Remarkably, the set of stray magnetic field fingerprints are readily discerned by a compact giant magnetoresistance sensor for parallelised screening of multiple distinctive pathogenic DNAs. This opens up the magneto-multiplexing opportunity and could enable streamlined assays to incorporate magneto-mixing, washing, enrichment and separation of analytes. This strategy therefore suggests a potential point-of-care testing solution for efficient kinetic assays.
Collapse
Affiliation(s)
- Yuan Liu
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Yinghui Chen
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Ingolf Mönch
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW 2113, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia. and UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018; 1024:18-38. [PMID: 29776545 PMCID: PMC6082128 DOI: 10.1016/j.aca.2018.01.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Human breath, along with urine and blood, has long been one of the three major biological media for assessing human health and environmental exposure. In fact, the detection of odor on human breath, as described by Hippocrates in 400 BC, is considered the first analytical health assessment tool. Although less common in comparison to contemporary bio-fluids analyses, breath has become an attractive diagnostic medium as sampling is non-invasive, unlimited in timing and volume, and does not require clinical personnel. Exhaled breath, exhaled breath condensate (EBC), and exhaled breath aerosol (EBA) are different types of breath matrices used to assess human health and disease state. Over the past 20 years, breath research has made many advances in assessing health state, overcoming many of its initial challenges related to sampling and analysis. The wide variety of sampling techniques and collection devices that have been developed for these media are discussed herein. The different types of sensors and mass spectrometry instruments currently available for breath analysis are evaluated as well as emerging breath research topics, such as cytokines, security and airport surveillance, cellular respiration, and canine olfaction.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| | - Joachim D Pleil
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
5
|
Llibre A, Bondet V, Rodero MP, Hunt D, Crow YJ, Duffy D. Development and Validation of an Ultrasensitive Single Molecule Array Digital Enzyme-linked Immunosorbent Assay for Human Interferon-α. J Vis Exp 2018:57421. [PMID: 29985347 PMCID: PMC6101729 DOI: 10.3791/57421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The main aim of this protocol is to describe the development and validation of an interferon (IFN)-α single molecule array digital Enzyme-Linked ImmunoSorbent Assay (ELISA) assay. This system enables the quantification of human IFN-α protein with unprecedented sensitivity, and with no cross-reactivity for other species of IFN. The first key step of the protocol is the choice of the antibody pair, followed by the conjugation of the capture antibody to paramagnetic beads, and biotinylation of the detection antibody. Following this step, different parameters such as assay configuration, detector antibody concentration, and buffer composition can be modified until optimum sensitivity is achieved. Finally, specificity and reproducibility of the method are assessed to ensure confidence in the results. Here, we developed an IFN-α single molecule array assay with a limit of detection of 0.69 fg/mL using high-affinity autoantibodies isolated from patients with biallelic mutations in the autoimmune regulator (AIRE) protein causing autoimmune polyendocrinopathy syndrome type 1/autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APS1/APECED). Importantly, these antibodies enabled detection of all 13 IFN-α subtypes. This new methodology allows the detection and quantification of IFN-α protein in human biological samples at attomolar concentrations for the first time. Such a tool will be highly useful in monitoring the levels of this cytokine in human health and disease states, most particularly infection, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Immunobiology of Dendritic Cells, Institut Pasteur; INSERM U1223
| | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur; INSERM U1223
| | - Mathieu P Rodero
- Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, Institut Imagine
| | - David Hunt
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, Institut Imagine; Manchester Centre for Genomic Medicine, University of Manchester
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur; INSERM U1223;
| |
Collapse
|
6
|
Sanchez T, Seidler EA, Gardner DK, Needleman D, Sakkas D. Will noninvasive methods surpass invasive for assessing gametes and embryos? Fertil Steril 2017; 108:730-737. [DOI: 10.1016/j.fertnstert.2017.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022]
|
7
|
Abstract
Ligand-binding techniques such as immunoassays, the reference for clinical diagnosis, offer a wide range of innovative approaches based on signal DNA amplification, nanotechnologies or digital assays, which result in technologies with sensitivities more than 1000-times that of formats used 20 years ago. Providing that these technologies gain acceptance and translate into robust commercial platforms, we expect that several fields will be impacted in the near future, including the clinical diagnosis of cancer markers, the early detection of infectious diseases and the safety of biotherapeutics. Furthermore, the combination of these techniques with microfluidic systems will allow probing of biological diversity at the single cell level and will lead to the discovery of novel and rare biomarkers.
Collapse
|
8
|
Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49:49/4/1600965. [PMID: 28446552 DOI: 10.1183/13993003.00965-2016] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ildiko Horváth
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieann Högman
- Centre for Research & Development, Uppsala University/Gävleborg County Council, Gävle, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Goteborg, Sweden
| | - Anton Amann
- Innsbruck Medical University, Innsbruck, Austria
| | - Balazs Antus
- Dept of Pathophysiology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes W Boots
- Dept of Pharmacology and Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Lieuwe D Bos
- Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Caterina Bucca
- Biomedical Sciences and Human Oncology, Universita' di Torino, Turin, Italy
| | | | | | - Simona Cristescu
- Dept of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johan C de Jongste
- Dept of Pediatrics/Respiratory Medicine, Erasmus MC-Sophia Childrens' Hospital, Rotterdam, The Netherlands
| | | | - Edward Dompeling
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niki Fens
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen Fowler
- Respiratory Research Group, University of Manchester Wythenshawe Hospital, Manchester, UK
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Quirijn Jöbsis
- Department of Paediatric Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Kim Van De Kant
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo H Knobel
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| | | | | | - Jon Lundberg
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Alain Van Muylem
- Hopital Erasme Cliniques Universitaires de Bruxelles, Bruxelles, Belgium
| | - Giorgio Pennazza
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich Loeffler Institut, Jena, Germany
| | - Fabio L M Ricciardolo
- Clinic of Respiratory Disease, Dept of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Philippe Rosias
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Pediatrics, Maasland Hospital, Sittard, The Netherlands
| | - Marco Santonico
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Marc P van der Schee
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Thomy Tonia
- European Respiratory Society, Lausanne, Switzerland
| | - Teunis J Vink
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Stiegel MA, Pleil JD, Sobus JR, Stevens T, Madden MC. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:485-501. [PMID: 28696913 PMCID: PMC6089069 DOI: 10.1080/15287394.2017.1330578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human biomonitoring is an indispensable tool for evaluating the systemic effects derived from external stressors including environmental pollutants, chemicals from consumer products, and pharmaceuticals. The aim of this study was to explore consequences of environmental exposures to diesel exhaust (DE) and ozone (O3) and ultimately to interpret these parameters from the perspective of in vitro to in vivo extrapolation. In particular, the objective was to use cytokine expression at the cellular level as a biomarker for physiological systemic responses such as blood pressure and lung function at the systemic level. The values obtained could ultimately link in vivo behavior to simpler in vitro experiments where cytokines are a measured parameter. Human exposures to combinations of DE and O3 and the response correlations between forced exhaled volume in 1 second (FEV1), forced vital capacity (FVC), systolic and diastolic blood pressure (SBP and DBP, respectively), and 10 inflammatory cytokines in blood (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) were determined in 15 healthy human volunteers. Results across all exposures revealed that certain individuals displayed greater inflammatory responses compared to the group and, generally, there was more between-person variation in the responses. Evidence indicates that individuals are more stable within themselves and are more likely to exhibit responses independent of one another. Data suggest that in vitro findings may ultimately be implemented to elucidate underlying adverse outcome pathways (AOP) for linking high-throughput toxicity tests to physiological in vivo responses. Further, this investigation supports assessing subjects based upon individual responses as a complement to standard longitudinal (pre vs. post) intervention grouping strategies. Ultimately, it may become possible to predict a physiological (systemic) response based upon cellular-level (in vitro) observations.
Collapse
Affiliation(s)
- Matthew A Stiegel
- a Duke University Medical Center , Department of Occupational and Environmental Safety , Durham , NC , US
| | - Joachim D Pleil
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Jon R Sobus
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Tina Stevens
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| | - Michael C Madden
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| |
Collapse
|
10
|
Stiegel MA, Pleil JD, Sobus JR, Madden MC. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures. PLoS One 2016; 11:e0152458. [PMID: 27058360 PMCID: PMC4825980 DOI: 10.1371/journal.pone.0152458] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lymphocyte decreases and neutrophil increases following the DE + O3 exposure; lymphocytes and neutrophils changes also persist for at least 22-hours. Because human studies must be conducted under strict safety protocols at environmental levels, these effects are subtle and are generally only seen with detailed statistical analysis. This study indicates that the observed associations between environmental exposures and cardiopulmonary effects are possibly mediated by inflammatory response mechanisms.
Collapse
Affiliation(s)
- Matthew A. Stiegel
- Duke University Medical Center, Department of Occupational and Environmental Safety, Division of Occupational Hygiene and Safety, Durham, North Carolina, United States of America
| | - Joachim D. Pleil
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Jon R. Sobus
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Michael C. Madden
- United States Environmental Protection Agency, National Health and Environmental Effects Research Lab, Environmental Public Health Division, Chapel Hill, North Carolina, United States of America
| |
Collapse
|