1
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
3
|
Tonndorf R, Aibibu D, Cherif C. Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. Int J Mol Sci 2021; 22:9561. [PMID: 34502469 PMCID: PMC8431235 DOI: 10.3390/ijms22179561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
In this review article, tissue engineering and regenerative medicine are briefly explained and the importance of scaffolds is highlighted. Furthermore, the requirements of scaffolds and how they can be fulfilled by using specific biomaterials and fabrication methods are presented. Detailed insight is given into the two biopolymers chitosan and collagen. The fabrication methods are divided into two categories: isotropic and anisotropic scaffold fabrication methods. Processable biomaterials and achievable pore sizes are assigned to each method. In addition, fiber spinning methods and textile fabrication methods used to produce anisotropic scaffolds are described in detail and the advantages of anisotropic scaffolds for tissue engineering and regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, 01069 Dresden, Germany; (D.A.); (C.C.)
| | | | | |
Collapse
|
4
|
Siriwardane ML, Derosa K, Collins G, Pfister BJ. Engineering Fiber-Based Nervous Tissue Constructs for Axon Regeneration. Cells Tissues Organs 2021; 210:105-117. [PMID: 34198287 DOI: 10.1159/000515549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Biomaterial-based scaffolds used in nerve conduits including channels for confining regenerating axons and 3-dimensional (3D) gels as substrates for growth have made improvements in models of nerve repair. Many biomaterial strategies, however, continue to fall short of autologous nerve grafts, which remain the current gold standard in repairing severe nerve lesions (<20 mm). Intraluminal nerve conduit fibers have also shown considerable promise in directing regenerating axons in vitro and in vivo and have gained increasing interest for nerve repair. It is unknown, however, how growing axons respond to a fiber when encountered in a 3D environment. In this study, we considered a construct consisting of a compliant collagen hydrogel matrix and a fiber component to assess contact-guided axon growth. We investigated preferential axon outgrowth on synthetic and natural polymer fibers by utilizing small-diameter microfibers of poly-L-lactic acid and type I collagen representing 2 different fiber stiffnesses. We found that axons growing freely in a 3D hydrogel culture preferentially attach, turn and follow fibers with outgrowth rates and distances that far exceed outgrowth in a hydrogel alone. Wet-spun type I collagen from rat tail tendon performed the best, associated with highly aligned and accelerated outgrowth. This study also evaluated the response of dorsal root ganglion neurons from adult rats to provide data more relevant to axon regenerative potential in nerve repair. We found that ECM treatments on fibers enhanced the regeneration of adult axons indicating that both the physical and biochemical presentation of the fibers are essential for enhancing axon guidance and growth.
Collapse
Affiliation(s)
- Mevan L Siriwardane
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Kathleen Derosa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - George Collins
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
5
|
Geanaliu-Nicolae RE, Andronescu E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5641. [PMID: 33321865 PMCID: PMC7764196 DOI: 10.3390/ma13245641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
Due to their unique properties-the are biocompatible, easily accessible, and inexpensive with programmable properties-biopolymers are used in pharmaceutical and biomedical research, as well as in cosmetics and food. Collagen is one of the most-used biomaterials in biomedicine, being the most abundant protein in animals with a triple helices structure, biocompatible, biomimetic, biodegradable, and hemostatic. Its disadvantages are its poor mechanical and thermal properties and enzymatic degradation. In order to solve this problem and to use its benefits, collagen can be used blended with other biomaterials such as alginate, chitosan, and cellulose. The purpose of this review article is to offer a brief paper with updated information on blended collagen-based formulations and their potential application in biomedicine.
Collapse
Affiliation(s)
- Ruxandra-Elena Geanaliu-Nicolae
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | |
Collapse
|
6
|
Hasanzadeh E, Mahmoodi N, Basiri A, Esmaeili Ranjbar F, Hassannejad Z, Ebrahimi-Barough S, Azami M, Ai J, Rahimi-Movaghar V. Proanthocyanidin as a crosslinking agent for fibrin, collagen hydrogels and their composites with decellularized Wharton’s-jelly-extract for tissue engineering applications. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520956252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In tissue engineering, natural hydrogel scaffolds gained considerable attention due to their biocompatibility and similarity to macromolecular-based components in the body. However, their low mechanical strength and high degradation degree limit their biomedical application. By varying the composition of hydrogels, their biochemical and mechanical properties can be improved. In this study, the stability of fibrin and collagen hydrogels and their composites with decellularized Wharton’s jelly extract (DEWJ) was improved using proanthocyanidin (PA) as a cross-linker, extracted from grape seeds. The cytocompatibility, physicochemical and mechanical properties of the hydrogels were evaluated. Human endometrial stem cells (hEnSCs) were seeded on the hydrogels and their attachment, morphology, and proliferation were investigated using a scanning electron and optical microscopy. Our results showed that hydrogels containing DEWJ along with PA enhance cell proliferation and showed higher mechanical properties compared with the fibrin and collagen hydrogel. The results present the potential utility of these hydrogels in tissue engineering and for application in three-dimensional culture.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Esmaeili Ranjbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Pfister BJ, Grasman JM, Loverde JR. Exploiting biomechanics to direct the formation of nervous tissue. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Pawar K, Welzel G, Haynl C, Schuster S, Scheibel T. Recombinant Spider Silk and Collagen-Based Nerve Guidance Conduits Support Neuronal Cell Differentiation and Functionality in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:4872-4880. [DOI: 10.1021/acsabm.9b00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kiran Pawar
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| | | | - Christian Haynl
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| | | | - Thomas Scheibel
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| |
Collapse
|
9
|
Tonndorf R, Aibibu D, Cherif C. Collagen multifilament spinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110105. [PMID: 31753356 DOI: 10.1016/j.msec.2019.110105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
The benefits of fiber based implants and scaffolds for tissue engineering applications are their anisotropic, highly porous, and controllable macro-, micro-, and nanostructure. Collagen is one of the most commonly used material for the fabrication of scaffolds, as this biopolymer is present in the natural extracellular matrix. For textile processing and textile scaffold fabrication methods, multifilament yarns are required, however, only monofilaments can be generated by state-of-the-art collagen spinning. Hence, the research presented in here aimed at the development of a collagen multifilament wet-spinning process in reproducible quality as well as the characterization of non-crosslinked and crosslinked wet-spun multifilament yarns. Wet spun collagen yarns were comprised of 6 single filaments each having a fineness of 5 tex and a diameter of 80 μm. The tensile strength of the glutaraldehyde crosslinked yarns was 169 MPa (Young's modulus 3534 MPa) in the dry state and 40 MPa (Young's modulus 281 MPa) in the wet state. Furthermore, wet spun collagen filaments showed a characteristic fibrillar structure, which was similar the morphological structure of natural collagen fibers. The textile processing of collagen multifilament yarn was demonstrated by means of knitting technology.
Collapse
Affiliation(s)
- Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany.
| | - Dilbar Aibibu
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany
| |
Collapse
|
10
|
Jenkins TL, Little D. Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. NPJ Regen Med 2019; 4:15. [PMID: 31263573 PMCID: PMC6597555 DOI: 10.1038/s41536-019-0076-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering often uses synthetic scaffolds to direct cell responses during engineered tissue development. Since cells reside within specific niches of the extracellular matrix, it is important to understand how the matrix guides cell response and then incorporate this knowledge into scaffold design. The goal of this review is to review elements of cell-matrix interactions that are critical to informing and evaluating cellular response on synthetic scaffolds. Therefore, this review examines fibrous proteins of the extracellular matrix and their effects on cell behavior, followed by a discussion of the cellular responses elicited by fiber diameter, alignment, and scaffold porosity of two dimensional (2D) and three dimensional (3D) synthetic scaffolds. Variations in fiber diameter, alignment, and scaffold porosity guide stem cells toward different lineages. Cells generally exhibit rounded morphology on nanofibers, randomly oriented fibers, and low-porosity scaffolds. Conversely, cells exhibit elongated, spindle-shaped morphology on microfibers, aligned fibers, and high-porosity scaffolds. Cells migrate with higher velocities on nanofibers, aligned fibers, and high-porosity scaffolds but migrate greater distances on microfibers, aligned fibers, and highly porous scaffolds. Incorporating relevant biomimetic factors into synthetic scaffolds destined for specific tissue application could take advantage of and further enhance these responses.
Collapse
Affiliation(s)
- Thomas Lee Jenkins
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Dianne Little
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
11
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
12
|
|
13
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
14
|
Choi JW, Kim JW, Jo IH, Koh YH, Kim HE. Novel Self-Assembly-Induced Gelation for Nanofibrous Collagen/Hydroxyapatite Composite Microspheres. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1110. [PMID: 28934135 PMCID: PMC5666916 DOI: 10.3390/ma10101110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022]
Abstract
This study demonstrates the utility of the newly developed self-assembly-induced gelation technique for the synthesis of porous collagen/hydroxyapatite (HA) composite microspheres with a nanofibrous structure. This new approach can produce microspheres of a uniform size using the droplets that form at the nozzle tip before gelation. These microspheres can have a highly nanofibrous structure due to the immersion of the droplets in a coagulation bath (water/acetone), in which the collagen aggregates in the solution can self-assemble into fibrils due to pH-dependent precipitation. Bioactive HA particles were incorporated into the collagen solutions, in order to enhance the bioactivity of the composite microspheres. The composite microspheres exhibited a well-defined spherical morphology and a uniform size for all levels of HA content (0 wt %, 10 wt %, 15 wt %, and 20 wt %). Collagen nanofibers-several tens of nanometers in size-were uniformly present throughout the microspheres and the HA particles were also well dispersed. The in vitro apatite-forming ability, assessed using the simulated body fluid (SBF) solution, increased significantly with the incorporation of HA into the composite microspheres.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Jong-Woo Kim
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - In-Hwan Jo
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Young-Hag Koh
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Farrell K, Joshi J, Kothapalli CR. Injectable uncrosslinked biomimetic hydrogels as candidate scaffolds for neural stem cell delivery. J Biomed Mater Res A 2016; 105:790-805. [PMID: 27798959 DOI: 10.1002/jbm.a.35956] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/03/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022]
Abstract
Mammalian central nervous system has a limited ability for self-repair under diseased or injury conditions. Repair strategies focused on exogenously delivering autologous neural stem cells (NSCs) to replace lost neuronal populations and axonal pathways in situ, and promote endogenous repair mechanisms are gaining traction. Successful outcomes are contingent on selecting an appropriate delivery vehicle for injecting cells that promotes cell retention and survival, elicits differentiation to desired lineages, and enhances axonal outgrowth upon integration into the host tissue. Hydrogels made of varying compositions of collagen, laminin, hyaluronic acid (HA), and chondroitin sulfate proteoglycan (CSPG) were developed, with no external crosslinking agents, to mimic the native extracellular matrix composition. The physical (porosity, pore-size, gel integrity, swelling ratio, and enzymatic degradation), mechanical (viscosity, storage and loss moduli, Young's modulus, creep, and stress-relaxation), and biological (cell survival, differentiation, neurite outgrowth, and integrin expression) characteristics of these hydrogels were assessed. These hydrogels exhibited excellent injectability, retained gel integrity, and matched the mechanical moduli of native brain tissue, possibly due to natural collagen fibril polymerization and physical-crosslinking between HA molecules and collagen fibrils. Depending on the composition, these hydrogels promoted cell survival, neural differentiation, and neurite outgrowth, as evident from immunostaining and western blots. These cellular outcomes were facilitated by cellular binding via α6 , β1 , and CD44 surface integrins to these hydrogels. Results attest to the utility of uncrosslinked, ECM-mimicking hydrogels to deliver NSCs for tissue engineering and regenerative medicine applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 790-805, 2017.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, 44115
| | - Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, 44115
| | | |
Collapse
|
16
|
Campos F, Bonhome-Espinosa AB, García-Martínez L, Durán JDG, López-López MT, Alaminos M, Sánchez-Quevedo MC, Carriel V. Ex vivo characterization of a novel tissue-like cross-linked fibrin-agarose hydrogel for tissue engineering applications. ACTA ACUST UNITED AC 2016; 11:055004. [PMID: 27680194 DOI: 10.1088/1748-6041/11/5/055004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The generation of biomaterials with adequate biomechanical and structural properties remains a challenge in tissue engineering and regenerative medicine. Earlier research has shown that nanostructuration and cross-linking techniques improved the biomechanical and structural properties of different biomaterials. Currently, uncompressed and nanostructured fibrin-agarose hydrogels (FAH and NFAH, respectively) have been used successfully in tissue engineering. The aim of this study was to investigate the possibility of improving the structural and biomechanical properties of FAH and NFAH by using 0.25% and 0.5% (v/v) glutaraldehyde (GA) as a cross-linker. These non-cross-linked and cross-linked hydrogels were subjected to structural, rheological and ex vivo biocompatibility analyses. Our results showed that GA cross-linking induced structural changes and significantly improved the rheological properties of FAH and NFAH. In addition, ex vivo biocompatibility analyses demonstrated viable cells in all conditions, although viability was more compromised when 0.5% GA was used. Our study demonstrates that it is possible to control fiber density and hydrogel porosity of FAH and NFAH by using nanostructuration or GA cross-linking techniques. In conclusion, hydrogels cross-linked with 0.25% GA showed promising structural, biochemical and biological properties for use in tissue engineering.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria Ibis. GRANADA, Granada, Spain. PhD Student, Doctoral Program in Biomedicine, University of Granada, Spain and Fundación Anticancer Francisco Javier y Santa Cándida, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sharifi F, Patel BB, Dzuilko AK, Montazami R, Sakaguchi DS, Hashemi N. Polycaprolactone Microfibrous Scaffolds to Navigate Neural Stem Cells. Biomacromolecules 2016; 17:3287-3297. [PMID: 27598294 DOI: 10.1021/acs.biomac.6b01028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibrous scaffolds have shown promise in tissue engineering due to their ability to improve cell alignment and migration. In this paper, poly(ε-caprolactone) (PCL) fibers are fabricated in different sizes using a microfluidic platform. By using this approach, we demonstrated considerable flexibility in ability to control the size of the fibers. It was shown that the average diameter of the fibers was obtained in the range of 2.6-36.5 μm by selecting the PCL solution flow rate from 1 to 5 μL min-1 and the sheath flow rate from 20 to 400 μL min-1 in the microfluidic channel. The microfibers were used to create 3D microenvironments in order to investigate growth and differentiation of adult hippocampal stem/progenitor cells (AHPCs) in vitro. The results indicated that the 3D topography of the PCL substrates, along with chemical (extracellular matrix) guidance cues supported the adhesion, survival, and differentiation of the AHPCs. Additionally, it was found that the cell deviation angle for 44-66% of cells on different types of fibers was less than 10°. This reveals the functionality of PCL fibrous scaffolds for cell alignment important in applications such as reconnecting serious nerve injuries and guiding the direction of axon growth as well as regenerating blood vessels, tendons, and muscle tissue.
Collapse
Affiliation(s)
- Farrokh Sharifi
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Bhavika B Patel
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Adam K Dzuilko
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Reza Montazami
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Donald S Sakaguchi
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| | - Nastaran Hashemi
- Department of Mechanical Engineering, ‡Department of Genetics, Development and Cell Biology and Neuroscience, and §Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
18
|
Haynl C, Hofmann E, Pawar K, Förster S, Scheibel T. Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties. NANO LETTERS 2016; 16:5917-22. [PMID: 27513098 DOI: 10.1021/acs.nanolett.6b02828] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced by wet-spinning yielding fiber diameters higher than 8 μm. Here, assembly and continuous production of single collagen type I microfibers were established using a microfluidic chip. Microfluidics-produced microfibers exhibited tensile strength and Young's modulus exceeding that of fibers produced in classical wet-spinning devices and even that of natural tendon and they showed lower diameters. Their structural orientation was examined by polarized Fourier transform infrared spectroscopy (FTIR) showing fibril alignment within the microfiber. Cell culture tests using the neuronal cell line NG108-15 showed cell alignment and axon growth along the microfiber axes inaugurating potential applications in, for example, peripheral nerve repair.
Collapse
Affiliation(s)
| | | | | | - Stephan Förster
- Bayerisches Polymerinstitut (BPI) , Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Bayerisches Polymerinstitut (BPI) , Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Shi X, Xiao Y, Xiao H, Harris G, Wang T, Che J. Topographic guidance based on microgrooved electroactive composite films for neural interface. Colloids Surf B Biointerfaces 2016; 145:768-776. [PMID: 27295493 DOI: 10.1016/j.colsurfb.2016.05.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/20/2016] [Accepted: 05/28/2016] [Indexed: 01/19/2023]
Abstract
Topographical features are essential to neural interface for better neuron attachment and growth. This paper presents a facile and feasible route to fabricate an electroactive and biocompatible micro-patterned Single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) composite films (SWNT/PEDOT) for interface of neural electrodes. The uniform SWNT/PEDOT composite films with nanoscale pores and microscale grooves significantly enlarged the electrode-electrolyte interface, facilitated ion transfer within the bulk film, and more importantly, provided topology cues for the proliferation and differentiation of neural cells. Electrochemical analyses indicated that the introduction of PEDOT greatly improved the stability of the SWNT/PEDOT composite film and decreased the electrode/electrolyte interfacial impedance. Further, in vitro culture of rat pheochromocytoma (PC12) cells and MTT testing showed that the grooved SWNT/PEDOT composite film was non-toxic and favorable to guide the growth and extension of neurite. Our results demonstrated that the fabricated microscale groove patterns were not only beneficial in the development of models for nervous system biology, but also in creating therapeutic approaches for nerve injuries.
Collapse
Affiliation(s)
- Xiaoyao Shi
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China
| | - Yinghong Xiao
- College of Dentistry, Howard University, Washington, DC 20059, USA; Collaborative Innovation Center for Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| | - Hengyang Xiao
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China
| | - Gary Harris
- College of Engineering, Howard University, Washington, DC 20059, USA
| | - Tongxin Wang
- College of Dentistry, Howard University, Washington, DC 20059, USA; College of Engineering, Howard University, Washington, DC 20059, USA.
| | - Jianfei Che
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China; College of Engineering, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
20
|
Timashev PS, Vedunova MV, Guseva D, Ponimaskin E, Deiwick A, Mishchenko TA, Mitroshina EV, Koroleva AV, Pimashkin AS, Mukhina IV, Panchenko VY, Chichkov BN, Bagratashvili VN. 3D
in vitro
platform produced by two-photon polymerization for the analysis of neural network formation and function. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/3/035001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Akbari M, Tamayol A, Bagherifard S, Serex L, Mostafalu P, Faramarzi N, Mohammadi MH, Khademhosseini A. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving. Adv Healthc Mater 2016; 5:751-66. [PMID: 26924450 PMCID: PMC4910159 DOI: 10.1002/adhm.201500517] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted.
Collapse
Affiliation(s)
- Mohsen Akbari
- Department of Medicine, Brigham and Women's Hospital, Biomaterials Innovation Research Center, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Ali Tamayol
- Department of Medicine, Brigham and Women's Hospital, Biomaterials Innovation Research Center, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sara Bagherifard
- Department of Medicine, Brigham and Women's Hospital, Biomaterials Innovation Research Center, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Politecnico di Milano, Milan, 20156, Italy
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ludovic Serex
- Department of Medicine, Brigham and Women's Hospital, Biomaterials Innovation Research Center, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pooria Mostafalu
- Department of Medicine, Brigham and Women's Hospital, Biomaterials Innovation Research Center, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Negar Faramarzi
- Department of Medicine, Brigham and Women's Hospital, Biomaterials Innovation Research Center, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mohammad Hossein Mohammadi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ali Khademhosseini
- Department of Medicine, Brigham and Women's Hospital, Biomaterials Innovation Research Center, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| |
Collapse
|
22
|
Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. Wet Spinning and Drawing of Human Recombinant Collagen. ACS Biomater Sci Eng 2016; 2:349-360. [DOI: 10.1021/acsbiomaterials.5b00461] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Amit Yaari
- The
Robert H. Smith Faculty of Agriculture, Food and Environment, and
the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
P.O. Box 12, Jerusalem, Israel
| | - Yaelle Schilt
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carmen Tamburu
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Uri Raviv
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Shoseyov
- The
Robert H. Smith Faculty of Agriculture, Food and Environment, and
the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
P.O. Box 12, Jerusalem, Israel
- CollPlant Ltd. 3 Sapir Street, P.O. Box 4132, Ness-Ziona, Israel
| |
Collapse
|
23
|
Update in facial nerve paralysis: tissue engineering and new technologies. Curr Opin Otolaryngol Head Neck Surg 2015; 22:291-9. [PMID: 24979369 DOI: 10.1097/moo.0000000000000062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To present the recent advances in the treatment of facial paralysis, emphasizing the emerging technologies. This review will summarize the current state of the art in the management of facial paralysis and discuss the advances in nerve regeneration, facial reanimation, and use of novel biomaterials. This review includes surgical innovations in reinnervation and reanimation as well as progress with bioelectrical interfaces. RECENT FINDINGS The last decade has witnessed major advances in the understanding of nerve injury and approaches for management. Key innovations include strategies to accelerate nerve regeneration, provide tissue-engineered constructs that may replace nonfunctional nerves, approaches to influence axonal guidance, limiting of donor-site morbidity, and optimization of functional outcomes. Approaches to muscle transfer continue to evolve, and new technologies allow for electrical nerve stimulation and use of artificial tissues. SUMMARY The fields of biomedical engineering and facial reanimation increasingly intersect, with innovative surgical approaches complementing a growing array of tissue engineering tools. The goal of treatment remains the predictable restoration of natural facial movement, with acceptable morbidity and long-term stability. Advances in bioelectrical interfaces and nanotechnology hold promise for widening the window for successful treatment intervention and for restoring both lost neural inputs and muscle function.
Collapse
|