1
|
Yang S, Li Y, Ye J, Wang L, Xu M. Three-dimensional bioprinting utilizing sacrificial material support and longitudinal printability evaluation through volumetric imaging. BIOMATERIALS ADVANCES 2025; 169:214188. [PMID: 39842167 DOI: 10.1016/j.bioadv.2025.214188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
In three-dimensional (3D) bioprinting, the internal channel network is vital for nutrient and oxygen transport, crucial for cell survival and tissue construction. However, bioinks' poor mechanical properties hinder precise control over these networks. Advancements in 3D printing strategies, structure characterization, and deformation monitoring can improve hydrogel scaffolds with interconnected channels. Using label-free, non-invasive, in-situ optical coherence tomography (OCT) imaging, we monitored the dynamic deformation of 3D bioprinted hydrogel scaffolds. We validated sacrificial materials' role in enhancing internal channels and introduced deformation characteristics, lateral pore ratio and pore-specific surface area as new parameters. Results from cell-laden hydrogels show that 3D bioprinting with sacrificial materials achieves high fidelity, minimizing collapse, inter-filament fusion, and enhancing lateral porosity. Furthermore, these promote cell proliferation and cell viability.
Collapse
Affiliation(s)
- Shanshan Yang
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China.
| | - Yongyang Li
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China
| | - Jinglong Ye
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China
| | - Ling Wang
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China.
| | - Mingen Xu
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Margarita A, Gugliandolo SG, Santoni S, Moscatelli D, Colosimo BM. A novel solution for real-time in-situcell distribution monitoring in 3D bioprinting via fluorescence imaging. Biofabrication 2025; 17:021001. [PMID: 39978084 DOI: 10.1088/1758-5090/adb891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
3D bioprinting is rapidly evolving as a transformative technology for constructing biological tissues with precise cell and bioink placement. However, ensuring the quality and viability of bioprinted structures presents significant challenges, highlighting the need for advanced monitoring systems. Our study introduces a space-efficient, non-invasive approach for real-time,in-situmonitoring of cell dispersion in bioprinted constructs. Utilizing a novelin-situfluorescence microscopy technique, we employ nanoparticles for cell tagging and integrate a compact digital microscope into the bioprinter for layer-by-layer imaging, significantly saving space and weight to make the solution adaptable to any commercial bioprinter. This method enhancesin-situanalysis by combining data from the fluorescence system with conventional visible spectrum imaging. The synergy of these datasets provides a detailed method to examine cell dispersion and facilitates continuous monitoring during the bioprinting process. This allows for the immediate identification and correction of irregularities in cell deposition. Our approach aims to advance 3D bioprinting, setting new standards for the reliability and efficiency of bioprinted structures.
Collapse
Affiliation(s)
- Alessandro Margarita
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156 Milano, Italy
| | - Simone Giovanni Gugliandolo
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156 Milano, Italy
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Silvia Santoni
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156 Milano, Italy
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Bianca Maria Colosimo
- Department of Mechanical Engineering, Politecnico di Milano, Via La Masa, 1, 20156 Milano, Italy
| |
Collapse
|
3
|
Barjuei ES, Shin J, Kim K, Lee J. Precision improvement of robotic bioprinting via vision-based tool path compensation. Sci Rep 2024; 14:17764. [PMID: 39085375 PMCID: PMC11291724 DOI: 10.1038/s41598-024-68597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Robotic 3D bioprinting is a rapidly advancing technology with applications in organ fabrication, tissue restoration, and pharmaceutical testing. While the stepwise generation of organs characterizes bioprinting, challenges such as non-linear material behavior, layer shifting, and trajectory tracking are common in freeform reversible embedding of suspended hydrogels (FRESH) bioprinting, leading to imperfections in complex organ construction. To overcome these limitations, we propose a computer vision-based strategy to identify discrepancies between printed filaments and the reference robot path. Employing error compensation techniques, we generate an adjusted reference path, enhancing robotic 3D bioprinting by adapting the robot path based on vision system data. Experimental assessments confirm the reliability and agility of our vision-based robotic 3D bioprinting approach, showcasing precision in fabricating human blood vessel segments through case studies. Significantly, it minimizes the printing layer width disparity to just 0.15 mm compared to the 0.6 mm in traditional methods, and it decreases the average error for curved filaments to 7.0 mm2 from the previous 12.7 mm2 in conventional printing. While these results underscore the significant potential of our innovation in creating precise biomimetic constructs, further investigation is necessary to tackle challenges such as accurately distinguishing closely stacked layers using a vision system, especially under varying lighting conditions. These limitations, coupled with issues of computational complexity and scalability in larger-scale bioprinting, emphasize the importance of enhancing the reliability of the vision-based approach across various conditions. Nonetheless, our innovation demonstrates substantial promise in creating precise biomimetic constructs and paves the way for future advancements in vision-guided robotic bioprinting, including the integration of multi-material printing techniques to enhance versatility.
Collapse
Affiliation(s)
- Erfan Shojaei Barjuei
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Joonhwan Shin
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Deparement of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jihyun Lee
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
4
|
Rossi A, Pescara T, Gambelli AM, Gaggia F, Asthana A, Perrier Q, Basta G, Moretti M, Senin N, Rossi F, Orlando G, Calafiore R. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol 2024; 12:1393641. [PMID: 38974655 PMCID: PMC11225062 DOI: 10.3389/fbioe.2024.1393641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Amongst the range of bioprinting technologies currently available, bioprinting by material extrusion is gaining increasing popularity due to accessibility, low cost, and the absence of energy sources, such as lasers, which may significantly damage the cells. New applications of extrusion-based bioprinting are systematically emerging in the biomedical field in relation to tissue and organ fabrication. Extrusion-based bioprinting presents a series of specific challenges in relation to achievable resolutions, accuracy and speed. Resolution and accuracy in particular are of paramount importance for the realization of microstructures (for example, vascularization) within tissues and organs. Another major theme of research is cell survival and functional preservation, as extruded bioinks have cells subjected to considerable shear stresses as they travel through the extrusion apparatus. Here, an overview of the main available extrusion-based printing technologies and related families of bioprinting materials (bioinks) is provided. The main challenges related to achieving resolution and accuracy whilst assuring cell viability and function are discussed in relation to specific application contexts in the field of tissue and organ fabrication.
Collapse
Affiliation(s)
- Arianna Rossi
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alberto Maria Gambelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Quentin Perrier
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Basta
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Moretti
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Nicola Senin
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Federico Rossi
- Engineering Department, University of Perugia, Perugia, Italy
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | |
Collapse
|
5
|
Fan B, Yang S, Wang L, Xu M. Spatially Resolved Defect Characterization and Fidelity Assessment for Complex and Arbitrary Irregular 3D Printing Based on 3D P-OCT and GCode. SENSORS (BASEL, SWITZERLAND) 2024; 24:3636. [PMID: 38894427 PMCID: PMC11175316 DOI: 10.3390/s24113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
To address the challenges associated with achieving high-fidelity printing of complex 3D bionic models, this paper proposes a method for spatially resolved defect characterization and fidelity assessment. This approach is based on 3D printer-associated optical coherence tomography (3D P-OCT) and GCode information. This method generates a defect characterization map by comparing and analyzing the target model map from GCode information and the reconstructed model map from 3D P-OCT. The defect characterization map enables the detection of defects such as material accumulation, filament breakage and under-extrusion within the print path, as well as stringing outside the print path. The defect characterization map is also used for defect visualization, fidelity assessment and filament breakage repair during secondary printing. Finally, the proposed method is validated on different bionic models, printing paths and materials. The fidelity of the multilayer HAP scaffold with gradient spacing increased from 0.8398 to 0.9048 after the repair of filament breakage defects. At the same time, the over-extrusion defects on the nostril and along the high-curvature contours of the nose model were effectively detected. In addition, the finite element analysis results verified that the 60-degree filling model is superior to the 90-degree filling model in terms of mechanical strength, which is consistent with the defect detection results. The results confirm that the proposed method based on 3D P-OCT and GCode can achieve spatially resolved defect characterization and fidelity assessment in situ, facilitating defect visualization and filament breakage repair. Ultimately, this enables high-fidelity printing, encompassing both shape and function.
Collapse
Affiliation(s)
- Bowen Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
| | - Shanshan Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| | - Ling Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| |
Collapse
|
6
|
Fernández A, Zapico P, Blanco D, Peña F, Beltrán N, Mateos S. On-Machine LTS Integration for Layer-Wise Surface Quality Characterization in MEX/P. SENSORS (BASEL, SWITZERLAND) 2024; 24:3459. [PMID: 38894250 PMCID: PMC11174827 DOI: 10.3390/s24113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Material Extrusion (MEX) currently stands as the most widespread Additive Manufacturing (AM) process, but part quality deficiencies remain a barrier to its generalized industrial adoption. Quality control in MEX is a complex task as extrusion performance impacts the consistency of mechanical properties and the surface finish, dimensional accuracy, and geometric precision of manufactured parts. Recognizing the need for early-stage process monitoring, this study explores the potential of integrating Laser Triangulation Sensors (LTS) into MEX/P manufacturing equipment for layer-wise 3D inspections. Using a double-bridge architecture, an LTS-based sub-micrometric inspection system operates independently from the manufacturing process, enabling comprehensive digitization and autonomous reconstruction of the target layer's topography. Surface texture is then computed using standardized indicators and a new approach that provides insight into layer quality uniformity. A case study evaluating two alternative extruder head designs demonstrates the efficacy of this integrated approach for layer quality characterization. Implementing a generalized layer-wise procedure based on this integration can significantly mitigate quality issues in MEX manufacturing and optimize process parameter configurations for enhanced performance.
Collapse
Affiliation(s)
| | | | - David Blanco
- Department of Construction and Manufacturing Engineering, University of Oviedo, 33203 Gijón, Asturias, Spain; (A.F.); (P.Z.); (F.P.); (N.B.); (S.M.)
| | | | | | | |
Collapse
|
7
|
Jiu J, Liu H, Li D, Li J, Liu L, Yang W, Yan L, Li S, Zhang J, Li X, Li JJ, Wang B. 3D bioprinting approaches for spinal cord injury repair. Biofabrication 2024; 16:032003. [PMID: 38569491 DOI: 10.1088/1758-5090/ad3a13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.
Collapse
Affiliation(s)
- Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Dijun Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenjie Yang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Bonatti AF, Vozzi G, De Maria C. Enhancing quality control in bioprinting through machine learning. Biofabrication 2024; 16:022001. [PMID: 38262061 DOI: 10.1088/1758-5090/ad2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Bioprinting technologies have been extensively studied in literature to fabricate three-dimensional constructs for tissue engineering applications. However, very few examples are currently available on clinical trials using bioprinted products, due to a combination of technological challenges (i.e. difficulties in replicating the native tissue complexity, long printing times, limited choice of printable biomaterials) and regulatory barriers (i.e. no clear indication on the product classification in the current regulatory framework). In particular, quality control (QC) solutions are needed at different stages of the bioprinting workflow (including pre-process optimization, in-process monitoring, and post-process assessment) to guarantee a repeatable product which is functional and safe for the patient. In this context, machine learning (ML) algorithms can be envisioned as a promising solution for the automatization of the quality assessment, reducing the inter-batch variability and thus potentially accelerating the product clinical translation and commercialization. In this review, we comprehensively analyse the main solutions that are being developed in the bioprinting literature on QC enabled by ML, evaluating different models from a technical perspective, including the amount and type of data used, the algorithms, and performance measures. Finally, we give a perspective view on current challenges and future research directions on using these technologies to enhance the quality assessment in bioprinting.
Collapse
Affiliation(s)
- Amedeo Franco Bonatti
- Department of Information Engineering and Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Engineering and Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Carmelo De Maria
- Department of Information Engineering and Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Zhou K, Ding R, Tao X, Cui Y, Yang J, Mao H, Gu Z. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models. Acta Biomater 2023; 169:243-255. [PMID: 37572980 DOI: 10.1016/j.actbio.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Despite 3D bioprinting having emerged as an advanced method for fabricating complex in vitro models, developing suitable bioinks that fulfill the opposing requirements for the biofabrication window still remains challenging. Although naturally derived hydrogels can better mimic the extracellular matrix (ECM) of numerous tissues, their weak mechanical properties usually result in architecturally simple shapes and patchy functions of in vitro models. Here, this limitation is addressed by a peptide-dendrimer-reinforced bioink (HC-PDN) which contained the peptide-dendrimer branched PEG with end-grafted norbornene (PDN) and the cysteamine-modified HA (HC). The extensive introduction of ethylene end-groups facilitates the grafting of sufficient moieties and enhances thiol-ene-induced crosslinking, making HC-PDN exhibits improved mechanical and rheological properties, as well as a significant reduction in reactive oxygen species (ROS) accumulation than that of methacrylated hyaluronic acid (HAMA). In addition, HC-PDN can be applied for the bioprinting of numerous complex structures with superior shape fidelity and soft matrix microenvironment. A heterogeneous and biomimetic hepatic tissue is concretely constructed in this work. The HepG2-C3As, LX-2s, and EA.hy.926s utilized with HC-PDN and assisted GelMA bioinks closely resemble the parenchymal and non-parenchymal counterparts of the native liver. The bioprinted models show the endothelium barrier function, hepatic functions, as well as increased activity of drug-metabolizing enzymes, which are essential functions of liver tissue in vivo. All these properties make HC-PDN a promising bioink to open numerous opportunities for in vitro model biofabrication. STATEMENT OF SIGNIFICANCE: In this manuscript, we introduced a peptide dendrimer system, which belongs to the family of hyperbranched 3D nanosized macromolecules that exhibit high molecular structure regularity and various biological advantages. Specifically, norbornene-modified peptide dendrimer was grafted onto PEG, and hyaluronic acid (HA) was selected as a base material for bioink formulation because it is a component of the ECM. Peptide dendrimers confer the following advantages to bioinks: (a) Geometric symmetry can facilitate construction of bioinks with homogeneous networks; (b) abundant surface functional groups allow for abundant crosslinking points; (c) the biological origin can promote biocompatibility. This study shows conceptualization to application of a peptide-dendrimer bioink to extend the Biofabrication Window of natural bioinks and will expand use of 3D bioprinting of in vitro models.
Collapse
Affiliation(s)
- Ke Zhou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Rongjian Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Xiwang Tao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yuwen Cui
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Jiquan Yang
- Jiangsu Key Lab of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210046, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
10
|
Van Ombergen A, Chalupa‐Gantner F, Chansoria P, Colosimo BM, Costantini M, Domingos M, Dufour A, De Maria C, Groll J, Jungst T, Levato R, Malda J, Margarita A, Marquette C, Ovsianikov A, Petiot E, Read S, Surdo L, Swieszkowski W, Vozzi G, Windisch J, Zenobi‐Wong M, Gelinsky M. 3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space. Adv Healthc Mater 2023; 12:e2300443. [PMID: 37353904 PMCID: PMC11468760 DOI: 10.1002/adhm.202300443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Indexed: 06/25/2023]
Abstract
3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- SciSpacE TeamDirectorate of Human and Robotic Exploration Programmes (HRE)European Space Agency (ESA)Keplerlaan 1Noordwijk2201AGThe Netherlands
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
| | - Franziska Chalupa‐Gantner
- Research Group 3D Printing and BiofabricationInstitute of Materials Science and TechnologyAustrian Cluster for Tissue RegenerationTU WienGetreidemarkt 9/E308Vienna1060Austria
| | - Parth Chansoria
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH Zurich Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Bianca Maria Colosimo
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Mechanical EngineeringPolitecnico di MilanoVia La Masa 1Milano20156Italy
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of SciencesUl. Kasprzaka 44/52Warsaw01–224Poland
| | - Marco Domingos
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of MechanicalAerospace and Civil EngineeringSchool of EngineeringFaculty of Science and Engineering & Henry Royce InstituteUniversity of ManchesterM13 9PLManchesterUK
| | - Alexandre Dufour
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Carmelo De Maria
- Department of Information Engineering (DII) and Research Center “E. Piaggio”University of PisaLargo Lucio Lazzarino 1Pisa56122Italy
| | - Jürgen Groll
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Riccardo Levato
- Department of OrthopaedicsUniversity Medical Center UtrechtDepartment of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Jos Malda
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of OrthopaedicsUniversity Medical Center UtrechtDepartment of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Alessandro Margarita
- Department of Mechanical EngineeringPolitecnico di MilanoVia La Masa 1Milano20156Italy
| | - Christophe Marquette
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Aleksandr Ovsianikov
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Research Group 3D Printing and BiofabricationInstitute of Materials Science and TechnologyAustrian Cluster for Tissue RegenerationTU WienGetreidemarkt 9/E308Vienna1060Austria
| | - Emma Petiot
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Sophia Read
- Department of MechanicalAerospace and Civil EngineeringSchool of EngineeringFaculty of Science and Engineering & Henry Royce InstituteUniversity of ManchesterM13 9PLManchesterUK
| | - Leonardo Surdo
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Space Applications Services NV/SA for the European Space Agency (ESA)Keplerlaan 1Noordwijk2201AGThe Netherlands
| | - Wojciech Swieszkowski
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Biomaterials GroupMaterials Design DivisionFaculty of Materials Science and EngineeringWarsaw University of TechnologyWoloska Str. 141Warsaw02–507Poland
| | - Giovanni Vozzi
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Information Engineering (DII) and Research Center “E. Piaggio”University of PisaLargo Lucio Lazzarino 1Pisa56122Italy
| | - Johannes Windisch
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Marcy Zenobi‐Wong
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH Zurich Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Michael Gelinsky
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| |
Collapse
|
11
|
McCorry MC, Reardon KF, Black M, Williams C, Babakhanova G, Halpern JM, Sarkar S, Swami NS, Mirica KA, Boermeester S, Underhill A. Sensor technologies for quality control in engineered tissue manufacturing. Biofabrication 2022; 15:10.1088/1758-5090/ac94a1. [PMID: 36150372 PMCID: PMC10283157 DOI: 10.1088/1758-5090/ac94a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.
Collapse
Affiliation(s)
- Mary Clare McCorry
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Kenneth F Reardon
- Chemical and Biological Engineering and Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, United States of America
| | - Marcie Black
- Advanced Silicon Group, Lowell, MA 01854, United States of America
| | - Chrysanthi Williams
- Access Biomedical Solutions, Trinity, Florida 34655, United States of America
| | - Greta Babakhanova
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States of America
- Materials Science and Engineering Program, University of New Hampshire, Durham, NH 03824, United States of America
| | - Sumona Sarkar
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Sarah Boermeester
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Abbie Underhill
- Scientific Bioprocessing Inc., Pittsburgh, PA 15238, United States of America
| |
Collapse
|
12
|
Panda S, Hajra S, Mistewicz K, Nowacki B, In-Na P, Krushynska A, Mishra YK, Kim HJ. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci 2022; 10:5054-5080. [PMID: 35876134 DOI: 10.1039/d2bm00797e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Krystian Mistewicz
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Bartłomiej Nowacki
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok-10330, Thailand
| | - Anastasiia Krushynska
- Engineering and Technology Institute Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea. .,Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea
| |
Collapse
|
13
|
Lindner N, Blaeser A. Scalable Biofabrication: A Perspective on the Current State and Future Potentials of Process Automation in 3D-Bioprinting Applications. Front Bioeng Biotechnol 2022; 10:855042. [PMID: 35669061 PMCID: PMC9165583 DOI: 10.3389/fbioe.2022.855042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Biofabrication, specifically 3D-Bioprinting, has the potential to disruptively impact a wide range of future technological developments to improve human well-being. Organs-on-Chips could enable animal-free and individualized drug development, printed organs may help to overcome non-treatable diseases as well as deficiencies in donor organs and cultured meat may solve a worldwide environmental threat in factory farming. A high degree of manual labor in the laboratory in combination with little trained personnel leads to high costs and is along with strict regulations currently often a hindrance to the commercialization of technologies that have already been well researched. This paper therefore illustrates current developments in process automation in 3D-Bioprinting and provides a perspective on how the use of proven and new automation solutions can help to overcome regulatory and technological hurdles to achieve an economically scalable production.
Collapse
Affiliation(s)
- Nils Lindner
- BioMedical Printing Technology, Department of Mechanical Engineering, TU Darmstadt, Darmstadt, Germany
| | - Andreas Blaeser
- BioMedical Printing Technology, Department of Mechanical Engineering, TU Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
14
|
Shinkar K, Rhode K. Could 3D extrusion bioprinting serve to be a real alternative to organ transplantation in the future? ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Sun W, Feinberg A, Webster-Wood V. Continuous fiber extruder for desktop 3D printers toward long fiber embedded hydrogel 3D printing. HARDWAREX 2022; 11:e00297. [PMID: 35509909 PMCID: PMC9058856 DOI: 10.1016/j.ohx.2022.e00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent advances in Freeform Reversible Embedding of Suspended Hydrogels (FRESH), a technique that is compatible with most open-source desktop 3D printers, has enabled the fabrication of complex 3D structures using a wide range of natural and synthetic hydrogels, whose mechanical properties can be modified by embedding long fibers into printed hydrogels. However, fiber extruders dedicated for this application are not commercially available or previously reported. To address this, we have designed a continuous fiber extruder (CFE) that is compatible with low-cost, open-source desktop 3D printers, and demonstrated its performance using a Flashforge Creator-pro printer with a Replistruder-2.0 print-head. Key characteristics of the CFE include: (1) it is affordable, accessible and user-friendly to the 3D printing community due to its low fabrication cost and compatibility with open-source hardware and software, (2) it can embed user-defined 2D and 3D features using long fibers into different types of hydrogels, (3) it works with fibers of different mechanical properties and sizes, (4) it can modify mechanical properties of FRESH printed hydrogels via long fiber embedding.
Collapse
Affiliation(s)
- Wenhuan Sun
- Department of Mechanical Engineering, Department of Biomedical Engineering, Carnegie Mellon University, United States
| | - Adam Feinberg
- Department of Mechanical Engineering, Department of Biomedical Engineering, Carnegie Mellon University, United States
| | - Victoria Webster-Wood
- Department of Mechanical Engineering, Department of Biomedical Engineering, Carnegie Mellon University, United States
| |
Collapse
|
16
|
Computer vision-aided bioprinting for bone research. Bone Res 2022; 10:21. [PMID: 35217642 PMCID: PMC8881598 DOI: 10.1038/s41413-022-00192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting, especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters, data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.
Collapse
|
17
|
Armstrong AA, Pfeil A, Alleyne AG, Wagoner Johnson AJ. Process monitoring and control strategies in extrusion-based bioprinting to fabricate spatially graded structures. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen DX. Printability in extrusion bioprinting. Biofabrication 2021; 13. [PMID: 33601340 DOI: 10.1088/1758-5090/abe7ab] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Extrusion bioprinting has been widely used to extrude continuous filaments of bioink (or the mixture of biomaterial and living cells), layer-by-layer, to build three-dimensional (3D) constructs for biomedical applications. In extrusion bioprinting, printability is an important parameter used to measure the difference between the designed construct and the one actually printed. This difference could be caused by the extrudability of printed bioink and/or the structural formability and stability of printed constructs. Although studies have reported in characterizing printability based on the bioink properties and printing process, the concept of printability is often confusingly and, sometimes, conflictingly used in the literature. The objective of this perspective is to define the printability for extrusion bioprinting in terms of extrudability, filament fidelity, and structural integrity, as well as to review the effect of bioink properties, bioprinting process, and construct design on the printability. Challenges related to the printability of extrusion bioprinting are also discussed, along with recommendations for improvements.
Collapse
Affiliation(s)
- Zhouquan Fu
- Mechanical Engineering and Mechanics, Drexel University, 3141 chestnut street, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| | - Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| | - Cancan Xu
- SunP Biotech LLC, 5 Allison Dr, Cherry Hill, New Jersey, 08003, UNITED STATES
| | - Chengjin Wang
- Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing, 100084, CHINA
| | - Wei Sun
- Mech Engineering, Drexel University, 3141 chestnut street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Daniel Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Saskatoon, Saskatchewan, S7N 5A9, CANADA
| |
Collapse
|
19
|
Ning L, Gil CJ, Hwang B, Theus AS, Perez L, Tomov ML, Bauser-Heaton H, Serpooshan V. Biomechanical factors in three-dimensional tissue bioprinting. APPLIED PHYSICS REVIEWS 2020; 7:041319. [PMID: 33425087 PMCID: PMC7780402 DOI: 10.1063/5.0023206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
3D bioprinting techniques have shown great promise in various fields of tissue engineering and regenerative medicine. Yet, creating a tissue construct that faithfully represents the tightly regulated composition, microenvironment, and function of native tissues is still challenging. Among various factors, biomechanics of bioprinting processes play fundamental roles in determining the ultimate outcome of manufactured constructs. This review provides a comprehensive and detailed overview on various biomechanical factors involved in tissue bioprinting, including those involved in pre, during, and post printing procedures. In preprinting processes, factors including viscosity, osmotic pressure, and injectability are reviewed and their influence on cell behavior during the bioink preparation is discussed, providing a basic guidance for the selection and optimization of bioinks. In during bioprinting processes, we review the key characteristics that determine the success of tissue manufacturing, including the rheological properties and surface tension of the bioink, printing flow rate control, process-induced mechanical forces, and the in situ cross-linking mechanisms. Advanced bioprinting techniques, including embedded and multi-material printing, are explored. For post printing steps, general techniques and equipment that are used for characterizing the biomechanical properties of printed tissue constructs are reviewed. Furthermore, the biomechanical interactions between printed constructs and various tissue/cell types are elaborated for both in vitro and in vivo applications. The review is concluded with an outlook regarding the significance of biomechanical processes in tissue bioprinting, presenting future directions to address some of the key challenges faced by the bioprinting community.
Collapse
Affiliation(s)
- Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Carmen J. Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Lilanni Perez
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Holly Bauser-Heaton
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| | - Vahid Serpooshan
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| |
Collapse
|
20
|
Armstrong AA, Alleyne AG, Wagoner Johnson AJ. 1D and 2D error assessment and correction for extrusion-based bioprinting using process sensing and control strategies. Biofabrication 2020; 12:045023. [PMID: 32702687 DOI: 10.1088/1758-5090/aba8ee] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bioprinting literature currently lacks: (i) process sensing tools to measure material deposition, (ii) performance metrics to evaluate system performance, and (iii) control tools to correct for and avoid material deposition errors. The lack of process sensing tools limits in vivo functionality of bioprinted parts since accurate material deposition is critical to mimicking the heterogeneous structures of native tissues. We present a process monitoring and control strategy for extrusion-based fabrication that addresses all three gaps to improve material deposition. Our strategy uses a non-contact laser displacement scanner that measures both the spatial material placement and width of the deposited material. We developed a custom image processing script that uses the laser scanner data and defined error metrics for assessing material deposition. To implement process control, the script uses the error metrics to modify control inputs for the next deposition iteration in order to correct for the errors. A key contribution is the definition of a novel method to quantitatively evaluate the accuracy of printed constructs. We implement the process monitoring and control strategy on an extrusion-printing system to evaluate system performance and demonstrate improvement in both material placement and material width.
Collapse
Affiliation(s)
- Ashley A Armstrong
- The University of Illinois at Urbana Champaign, Champaign, IL, United States of America
| | | | | |
Collapse
|
21
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|