1
|
Shi W, Zhang Z, Wang X. The Prospect of Hepatic Decellularized Extracellular Matrix as a Bioink for Liver 3D Bioprinting. Biomolecules 2024; 14:1019. [PMID: 39199406 PMCID: PMC11352484 DOI: 10.3390/biom14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The incidence of liver diseases is high worldwide. Many factors can cause liver fibrosis, which in turn can lead to liver cirrhosis and even liver cancer. Due to the shortage of donor organs, immunosuppression, and other factors, only a few patients are able to undergo liver transplantation. Therefore, how to construct a bioartificial liver that can be transplanted has become a global research hotspot. With the rapid development of three-dimensional (3D) bioprinting in the field of tissue engineering and regenerative medicine, researchers have tried to use various 3D bioprinting technologies to construct bioartificial livers in vitro. In terms of the choice of bioinks, liver decellularized extracellular matrix (dECM) has many advantages over other materials for cell-laden hydrogel in 3D bioprinting. This review mainly summarizes the acquisition of liver dECM and its application in liver 3D bioprinting as a bioink with respect to availability, printability, and biocompatibility in many aspects and puts forward the current challenges and prospects.
Collapse
Affiliation(s)
- Wen Shi
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| |
Collapse
|
2
|
Zhang X, Xia Y, Xu J, Kang J, Li X, Li Y, Yan W, Tian F, Zhao B, Li B, Wang C, Wang L. Cell-free chitosan/silk fibroin/bioactive glass scaffolds with radial pore for in situ inductive regeneration of critical-size bone defects. Carbohydr Polym 2024; 332:121945. [PMID: 38431423 DOI: 10.1016/j.carbpol.2024.121945] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Tissue-engineered is an effective method for repairing critical-size bone defects. The application of bioactive scaffold provides artificial matrix and suitable microenvironment for cell recruitment and extracellular matrix deposition, which can effectively accelerate the process of tissue regeneration. Among various scaffold properties, appropriate pore structure and distribution have been proven to play a crucial role in inducing cell infiltration differentiation and in-situ tissue regeneration. In this study, a chitosan (CS) /silk fibroin (SF) /bioactive glass (BG) composite scaffold with distinctive radially oriented pore structure was constructed. The composite scaffolds had stable physical and chemical properties, a unique pore structure of radial arrangement from the center to the periphery and excellent mechanical properties. In vitro biological studies indicated that the CS/SF/BG scaffold could promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the expression of related genes due to the wide range of connected pore structures and released active elements. Furthermore, in vivo study showed CS/SF/BG scaffold with radial pores was more conducive to the repair of skull defects in rats with accelerated healing speed during the bone tissue remodeling process. These results demonstrated the developed CS/SF/BG scaffold would be a promising therapeutic strategy for the repair of bone defects regeneration.
Collapse
Affiliation(s)
- Xinsong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yijing Xia
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jie Xu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jie Kang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiujuan Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yuanjiao Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Wenpeng Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Feng Tian
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - ChunFang Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Lu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| |
Collapse
|
3
|
Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater 2023; 18. [PMID: 36720168 DOI: 10.1088/1748-605x/acb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source. We differentiated human pluripotent stem cells (hPSC) toward pancreatic progenitor (PP) lineage and repopulated decellularized organ scaffolds with these hPSC-PP cells. We observed that hPSCs cultured and differentiated as aggregates are more suitable for organ repopulation than isolated single cell suspension. However, recellularization with hPSC-PP aggregates require a more extensive vascular support, which was found to be superior in decellularized liver over the decellularized pancreas scaffolds. Upon continued culture for nine days with chemical induction in the bioreactor, the seeded hPSC-PP aggregates demonstrated extensive and uniform cellular repopulation and viability throughout the thickness of the liver scaffolds. Furthermore, the decellularized liver scaffolds was supportive of the endocrine cell fate of the engrafted cells. Our novel strategy to engineer endocrine pancreas construct is expected to find potential applications in preclinical testing, drug discovery and diabetes therapy.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Thomas Richardson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
5
|
Janani G, Mandal BB. Mimicking Physiologically Relevant Hepatocyte Zonation Using Immunomodulatory Silk Liver Extracellular Matrix Scaffolds toward a Bioartificial Liver Platform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24401-24421. [PMID: 34019382 DOI: 10.1021/acsami.1c00719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mimicking nativelike metabolic zonation is indispensable to develop an efficient bioartificial liver model, as it facilitates physiological cues, hepatocyte polarity, and phenotypic functions. The present study shows the first evidence of hepatocyte metabolic heterogeneity in an in vitro liver model encompassing liver extracellular matrix (ECM)-functionalized silk scaffolds (LECM-SF) by altering ECM proportion. Upon static culture, individual LECM-SF scaffold supports differential synthetic and metabolic functions of cultured primary neonatal rat hepatocytes (PNRHs), owing to discrete biophysical attributes. A single in vitro liver system comprising PNRHs seeded LECM-SF scaffolds assisting periportal to pericentral gradient functions is stacked and matured in a perfusion bioreactor to simulate oxygen gradient. The scaffold with high ECM supports periportal-specific albumin synthesis, urea secretion, and bile duct formation, albeit scaffold with low ECM supports pericentral-specific cytochrome P450 activity. Extensive physicochemical characterizations confirmed the stability and interconnected porous network of scaffolds, signifying cellular infiltration and bidirectional nutrient diffusion. Furthermore, scaffolds demonstrate minimal thrombogenicity, reduced foreign-body response, and enhanced pro-remodeling macrophage activation, supporting constructive tissue remodeling. The developed liver model with zone-specific functions would be a promising avenue in bioartificial liver and drug screening.
Collapse
Affiliation(s)
- G Janani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|