1
|
Demri N, Dumas S, Nguyen M, Gropplero G, Abou‐Hassan A, Descroix S, Wilhelm C. Remote Magnetic Microengineering and Alignment of Spheroids into 3D Cellular Fibers. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202204850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/05/2025]
Abstract
AbstractDeveloping in vitro models that recapitulate the in vivo organization of living cells in a 3D microenvironment is one of the current challenges in the field of tissue engineering. In particular for anisotropic tissues where alignment of precursor cells is required for them to create functional structures. Herein, a new method is proposed that allows aligning in the direction of a uniform magnetic field both individual cells (muscle, stromal, and stem cells) or spheroids in a thermoresponsive collagen hydrogel. In an all‐in‐one approach, spheroids are generated at high throughput by magnetic engineering using microfabricated micromagnets and are used as building blocks to create 3D anisotropic tissue structures of different scales. The magnetic cells and spheroids alignment process is optimized in terms of magnetic cell labeling, concentration, and size. Anisotropic structures are induced to form fibers in the direction of the magnetic alignment, with the respective roles of the magnetic field, the mechanical stretching of hydrogel or co‐culture of the aligned cells with non‐magnetic stromal cells, being investigated. Over days, spheroids fuse into 3D tubular structures, oriented in the direction of the magnetic alignment. Moreover, in the case of the muscle cells model, multinucleated cells can be observed within the fibers.
Collapse
Affiliation(s)
- Noam Demri
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Simon Dumas
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Manh‐Louis Nguyen
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Giacomo Gropplero
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Ali Abou‐Hassan
- Institut Universitaire de France (IUF) 75231 Paris Cedex 05 France
- PHysico‐chimie des Electrolytes et Nanosystèmes InterfaciauX PHENIX CNRS UMR234 Sorbonne University 75005 Paris France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| |
Collapse
|
2
|
Wang X, Zhao R, Wang J, Li X, Jin L, Liu W, Yang L, Zhu Y, Tan Z. 3D-printed tissue repair patch combining mechanical support and magnetism for controlled skeletal muscle regeneration. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00180-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Wang P, Lv C, Zhou X, Wu Z, Wang Z, Wang Y, Wang L, Zhu Y, Guo M, Zhang P. Tannin-Bridged Magnetic Responsive Multifunctional Hydrogel for Enhanced Wound Healing by Mechanical Stimulation Induced Early Vascularization. J Mater Chem B 2022; 10:7808-7826. [DOI: 10.1039/d2tb01378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wound healing is a complex process. Wound repair material requires multiple functionalities, such as anti-inflammatory, antibacterial, angiogenesis, pro-proliferation, and remodeling. To achieve rapid tissue regeneration, magnetic field-assisted therapy has become...
Collapse
|