1
|
Huang D, Li Z, Li G, Zhou F, Wang G, Ren X, Su J. Biomimetic structural design in 3D-printed scaffolds for bone tissue engineering. Mater Today Bio 2025; 32:101664. [PMID: 40206144 PMCID: PMC11979411 DOI: 10.1016/j.mtbio.2025.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The rising prevalence of bone diseases in an aging population underscores the urgent need for innovative and clinically translatable solutions in bone tissue engineering. While significant progress has been made in refining the chemical properties of biomaterials, the structural design of scaffolds-a critical determinant of repair success-remains comparatively underexplored. Structural parameters such as porosity, pore size, and interconnectivity are not only essential for achieving mechanical stability but also pivotal in regulating biological processes, including vascularization, osteogenesis, and immune modulation. This review systematically categorizes scaffold architectures documented in the literature and highlights how these design parameters can be optimized to enhance bone regeneration. Advanced fabrication technologies, particularly 3D printing, are emphasized for their transformative potential in creating precise, biomimetic scaffolds that align with the complex functional demands of native bone. Furthermore, this work synthesizes diverse findings to provide a comprehensive framework for designing next-generation scaffolds. By bridging the gap between structural innovation and clinical application, this review delivers actionable strategies and a strategic roadmap for advancing the field toward improved clinical outcomes and transformative breakthroughs in regenerative medicine.
Collapse
Affiliation(s)
- Dan Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zuhao Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
2
|
Hu Y, Zhu T, Cui H, Cui H. Integrating 3D Bioprinting and Organoids to Better Recapitulate the Complexity of Cellular Microenvironments for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403762. [PMID: 39648636 DOI: 10.1002/adhm.202403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Organoids, with their capacity to mimic the structures and functions of human organs, have gained significant attention for simulating human pathophysiology and have been extensively investigated in the recent past. Additionally, 3D bioprinting, as an emerging bio-additive manufacturing technology, offers the potential for constructing heterogeneous cellular microenvironments, thereby promoting advancements in organoid research. In this review, the latest developments in 3D bioprinting technologies aimed at enhancing organoid engineering are introduced. The commonly used bioprinting methods and materials for organoids, with a particular emphasis on the potential advantages of combining 3D bioprinting with organoids are summarized. These advantages include achieving high cell concentrations to form large cellular aggregates, precise deposition of building blocks to create organoids with complex structures and functions, and automation and high throughput to ensure reproducibility and standardization in organoid culture. Furthermore, this review provides an overview of relevant studies from recent years and discusses the current limitations and prospects for future development.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
3
|
Jaeschke MW, Borelli AN, Skillin NP, White TJ, Anseth KS. Engineering a Hydrazone and Triazole Crosslinked Hydrogel for Extrusion-Based Printing and Cell Delivery. Adv Healthc Mater 2024; 13:e2400062. [PMID: 38805644 PMCID: PMC11305943 DOI: 10.1002/adhm.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Covalent adaptable crosslinks, such as the alkyl-hydrazone, endow hydrogels with unique viscoelastic properties applicable to cell delivery and bioink systems. However, the alkyl-hydrazone crosslink lacks stability in biologically relevant environments. Furthermore, when formed with biopolymers such as hyaluronic acid (HA), low molecular weight polymers (<60 kDa), or low polymer content (<2 wt%) hydrogels are typically employed as entanglements reduce injectability. Here, a high molecular weight (>60 kDa) HA alkyl-hydrazone crosslinked hydrogel is modified with benzaldehyde-poly(ethylene glycol)3-azide to incorporate azide functional groups. By reacting azide-modified HA with a multi-arm poly(ethylene glycol) (PEG) functionalized with bicyclononyne, stabilizing triazole bonds are formed through strain-promoted azide-alkyne cycloaddition (SPAAC). Increasing the fraction of triazole bonds within the hydrogel network from 0% to 12% SPAAC substantially increases stability. The slow gelation kinetics of the SPAAC reaction in the 12% SPAAC hydrogel enables transient self-healing properties and a similar extrusion force as the 0% SPAAC hydrogel. Methyl-PEG4-hydrazide is then introduced to further slowdown network evolution, which temporarily lowers the extrusion force, improves printability, and increases post-extrusion mesenchymal stem cell viability and function in the 12% SPAAC hydrogel. This work demonstrates improved stability and temporal injectability of high molecular weight HA-PEG hydrogels for extrusion-based printing and cell delivery.
Collapse
Affiliation(s)
- Matthew W Jaeschke
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
4
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Kouthouridis S, Sotra A, Khan Z, Alvarado J, Raha S, Zhang B. Modeling the Progression of Placental Transport from Early- to Late-Stage Pregnancy by Tuning Trophoblast Differentiation and Vascularization. Adv Healthc Mater 2023; 12:e2301428. [PMID: 37830445 PMCID: PMC11468690 DOI: 10.1002/adhm.202301428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The early-stage placental barrier is characterized by a lack of fetal circulation and by a thick trophoblastic barrier, whereas the later-stage placenta consists of vascularized chorionic villi encased in a thin, differentiated trophoblast layer, ideal for nutrient transport. In this work, predictive models of early- and late-stage placental transport are created using blastocyst-derived placental stem cells (PSCs) by modulating PSC differentiation and model vascularization. PSC differentiation results in a thinner, fused trophoblast layer, as well as an increase in human chorionic gonadotropin secretion, barrier permeability, and secretion of certain inflammatory cytokines, which are consistent with in vivo findings. Further, gene expression confirms this shift toward a differentiated trophoblast subtype. Vascularization results in a molecule type- and size-dependent change in dextran and insulin permeability. These results demonstrate that trophoblast differentiation and vascularization have critical effects on placental barrier permeability and that this model can be used as a predictive measure to assess fetal toxicity of xenobiotic substances at different stages of pregnancy.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Alexander Sotra
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Zaim Khan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Justin Alvarado
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Sandeep Raha
- Department of Pediatrics and the Graduate Programme in Medical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Boyang Zhang
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
8
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
9
|
Luo L, Liu L, Ding Y, Dong Y, Ma M. Advances in biomimetic hydrogels for organoid culture. Chem Commun (Camb) 2023; 59:9675-9686. [PMID: 37455615 DOI: 10.1039/d3cc01274c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
An organoid is a 3-dimensional (3D) cell culture system that mimics the structural and functional characteristics of organs, and it has promising applications in regenerative medicine, precision drug screening and personalised therapy. However, current culture techniques of organoids usually use mouse tumour-derived scaffolds (Matrigel) or other animal-derived decellularised extracellular matrices as culture systems with poorly defined components and undefined chemical and physical properties, which limit the growth of organoids and the reproducibility of culture conditions. In contrast, some synthetic culture materials have emerged in recent years with well-defined compositions, and flexible adjustment and optimisation of physical and chemical properties, which can effectively support organoid growth and development and prolong survival time of organoid in vitro. In this review, we will introduce the challenge of animal-derived decellularised extracellular matrices in organoid culture, and summarise the categories of biomimetic hydrogels currently used for organoid culture, and then discuss the future opportunities and perspectives in the development of advanced hydrogels in organoids. We hope that this review can promote academic communication in the field of organoid research and provide some assistance in advancing the development of organoid cultivation technology.
Collapse
Affiliation(s)
- Lili Luo
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yuxuan Ding
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yixuan Dong
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Min Ma
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| |
Collapse
|
10
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
11
|
Sotra A, Jozani KA, Zhang B. A vascularized crypt-patterned colon model for high-throughput drug screening and disease modelling. LAB ON A CHIP 2023. [PMID: 37335565 DOI: 10.1039/d3lc00211j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The colon serves as a primary target for pharmaceutical compound screening and disease modelling. To better study colon diseases and develop treatments, engineered in vitro models with colon-specific physiological features are required. Existing colon models lack integration of colonic crypt structures with underlying perfusable vasculature, where vascular-epithelial crosstalk is affected by disease progression. We present a colon epithelium barrier model with vascularized crypts that recapitulates relevant cytokine gradients in both healthy and inflammatory conditions. Using our previously published IFlowPlate384 platform, we initially imprinted crypt topography and populated the patterned scaffold with colon cells. Proliferative colon cells spontaneously localized to the crypt niche and differentiated into epithelial barriers with a tight brush border. Toxicity of the colon cancer drug, capecitabine, was tested and showed a dose-dependent response and recovery from crypt-patterned colon epithelium exclusively. Perfusable microvasculature was then incorporated around the colon crypts followed by treatment with pro-inflammatory TNFα and IFNγ cytokines to simulate inflammatory bowel disease (IBD)-like conditions. We observed in vivo-like stromal basal-to-apical cytokine gradients in tissues with vascularized crypts and gradient reversals upon inflammation. Taken together, we demonstrated crypt topography integrated with underlying perfusable microvasculature has significant value for emulating colon physiology and in advanced disease modelling.
Collapse
Affiliation(s)
- Alexander Sotra
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| | - Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
12
|
Levato R, Lim KS. Harnessing light in biofabrication. Biofabrication 2023; 15. [PMID: 36723633 DOI: 10.1088/1758-5090/acb50f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
The integration of light-driven technologies into biofabrication has revolutionized the field of tissue engineering and regenerative medicine, with numerous breakthroughs in the last few years. Light-based bioprinting approaches (lithography, multiphoton and volumetric bioprinting) have shown the potential to fabricate large scale tissue engineering constructs of high resolution, with great flexibility and control over the cellular organization. Given the unprecedented degree of freedom in fabricating convoluted structures, key challenges in regenerative medicine, such as introducing complex channels and pre-vascular networks in 3D constructs have also been addressed. Light has also been proven as a powerful tool, leading to novel photo-chemistry in designing bioinks, but also able to impart spatial-temporal control over cellular functions through photo-responsive chemistry. For instance, smart constructs able to undergo remotely controlled shape changes, stiffening, softening and degradation can be produced. The non-invasive nature of light stimulation also enables to trigger such responses post-fabrication, during the maturation phase of a construct. Such unique ability can be used to mimic the dynamic processes occurring in tissue regeneration, as well as in disease progression and degenerative processes in vivo. Bringing together these novel multidisciplinary expertise, the present Special Issue aims to discuss the most recent trends, strategies and novel light-based technologies in the field of biofabrication. These include: 1) using light-based bioprinting to develop in vitro models for drug screening, developmental biology models, disease models, and also functional tissues for implantation; 2) novel light-based biofabrication technologies; 3) development of new photo-responsive bioinks or biomaterial inks.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CT, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht 3584CX, The Netherlands
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia.,Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8025, New Zealand
| |
Collapse
|
13
|
Immunomodulatory PEG-CRGD Hydrogels Promote Chondrogenic Differentiation of PBMSCs. Pharmaceutics 2022; 14:pharmaceutics14122622. [PMID: 36559119 PMCID: PMC9780903 DOI: 10.3390/pharmaceutics14122622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cartilage damage is a common injury. Currently, tissue engineering scaffolds with composite seed cells have emerged as a promising approach for cartilage repair. Polyethylene glycol (PEG) hydrogels are attractive tissue engineering scaffold materials as they have high water absorption capacity as well as nontoxic and nutrient transport properties. However, PEG is fundamentally bio-inert and lacks intrinsic cell adhesion capability, which is critical for the maintenance of cell function. Cell adhesion peptides are usually added to improve the cell adhesion capability of PEG-based hydrogels. The suitable cell adhesion peptide can not only improve cell adhesion capability, but also promote chondrogenesis and regulate the immune microenvironment. To improve the interactions between cells and PEG hydrogels, we designed cysteine-arginine-glycine-aspartic acid (CRGD), a cell adhesion peptide covalently cross-linked with PEG hydrogels by a Michael addition reaction, and explored the tissue-engineering hydrogels with immunomodulatory effects and promoted chondrogenic differentiation of mesenchymal stem cells (MSCs). The results indicated that CRGD improved the interaction between peripheral blood mesenchymal stem cells (PBMSCs) and PEG hydrogels. PEG hydrogels modified with 1 mM CRGD had the optimal capacity to promote chondrogenic differentiation, and CRGD could induce macrophage polarization towards the M2 phenotype to promote tissue regeneration and repair. PEG-CRGD hydrogels combined with PBMSCs have the potential to be suitable scaffolds for cartilage tissue engineering.
Collapse
|
14
|
Miksch CE, Skillin NP, Kirkpatrick BE, Hach GK, Rao VV, White TJ, Anseth KS. 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200951. [PMID: 35732614 PMCID: PMC9463109 DOI: 10.1002/smll.202200951] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Indexed: 05/02/2023]
Abstract
Granular synthetic hydrogels are useful bioinks for their compatibility with a variety of chemistries, affording printable, stimuli-responsive scaffolds with programmable structure and function. Additive manufacturing of microscale hydrogels, or microgels, allows for the fabrication of large cellularized constructs with percolating interstitial space, providing a platform for tissue engineering at length scales that are inaccessible by bulk encapsulation where transport of media and other biological factors are limited by scaffold density. Herein, synthetic microgels with varying degrees of degradability are prepared with diameters on the order of hundreds of microns by submerged electrospray and UV photopolymerization. Porous microgel scaffolds are assembled by particle jamming and extrusion printing, and semi-orthogonal chemical cues are utilized to tune the void fraction in printed scaffolds in a logic-gated manner. Scaffolds with different void fractions are easily cellularized post printing and microgels can be directly annealed into cell-laden structures. Finally, high-throughput direct encapsulation of cells within printable microgels is demonstrated, enabling large-scale 3D culture in a macroporous biomaterial. This approach provides unprecedented spatiotemporal control over the properties of printed microporous annealed particle scaffolds for 2.5D and 3D tissue culture.
Collapse
Affiliation(s)
- Connor E Miksch
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grace K Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
15
|
Kirillova A, Yeazel TR, Gall K, Becker ML. Thiol-Based Three-Dimensional Printing of Fully Degradable Poly(propylene fumarate) Star Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38436-38447. [PMID: 35977091 DOI: 10.1021/acsami.2c06553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(propylene fumarate) star polymers photochemically 3D printed with degradable thiol cross-linkers yielded highly tunable biodegradable polymeric materials. Tailoring the alkene:thiol ratio (5:1, 10:1, 20:1 and 30:1) and thus the cross-link density within the PPF star systems yielded a wide variation of both the mechanical and degradation properties of the printed materials. Fundamental trends were established between the polymer network cross-link density, glass transition temperature, and tensile and thermomechanical properties of the materials. The tensile properties of the PPF star-based systems were compared to commercial state-of-the-art non-degradable polymer resins. The thiolene-cross-linked materials are fully degradable and possess properties over a wide range of mechanical properties relevant to regenerative medicine applications.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
16
|
Advances of Engineered Hydrogel Organoids within the Stem Cell Field: A Systematic Review. Gels 2022; 8:gels8060379. [PMID: 35735722 PMCID: PMC9222364 DOI: 10.3390/gels8060379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Organoids are novel in vitro cell culture models that enable stem cells (including pluripotent stem cells and adult stem cells) to grow and undergo self-organization within a three-dimensional microenvironment during the process of differentiation into target tissues. Such miniature structures not only recapitulate the histological and genetic characteristics of organs in vivo, but also form tissues with the capacity for self-renewal and further differentiation. Recent advances in biomaterial technology, particularly hydrogels, have provided opportunities to improve organoid cultures; by closely integrating the mechanical and chemical properties of the extracellular matrix microenvironment, with novel synthetic materials and stem cell biology. This systematic review critically examines recent advances in various strategies and techniques utilized for stem-cell-derived organoid culture, with particular emphasis on the application potential of hydrogel technology in organoid culture. We hope this will give a better understanding of organoid cultures for modelling diseases and tissue engineering applications.
Collapse
|
17
|
Mo X, Ouyang L, Xiong Z, Zhang T. Advances in Digital Light Processing of Hydrogels. Biomed Mater 2022; 17. [PMID: 35477166 DOI: 10.1088/1748-605x/ac6b04] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels, three-dimensional (3D) networks of hydrophilic polymers formed in water, are a significant type of soft matter used in fundamental and applied sciences. Hydrogels are of particular interest for biomedical applications, owing to their soft elasticity and good biocompatibility. However, the high water content and soft nature of hydrogels often make it difficult to process them into desirable solid forms. The development of 3D printing (3DP) technologies has provided opportunities for the manufacturing of hydrogels, by adopting a freeform fabrication method. Owing to its high printing speed and resolution, vat photopolymerization 3DP has recently attracted considerable interest for hydrogel fabrication, with digital light processing (DLP) becoming a widespread representative technique. Whilst acknowledging that other types of vat photopolymerization 3DP have also been applied for this purpose, we here only focus on DLP and its derivatives. In this review, we first comprehensively outline the most recent advances in both materials and fabrication, including the adaptation of novel hydrogel systems and advances in processing (e.g., volumetric printing and multimaterial integration). Secondly, we summarize the applications of hydrogel DLP, including regenerative medicine, functional microdevices, and soft robotics. To the best of our knowledge, this is the first time that either of these specific review focuses has been adopted in the literature. More importantly, we discuss the major challenges associated with hydrogel DLP and provide our perspectives on future trends. To summarize, this review aims to aid and inspire other researchers investigatng DLP, photocurable hydrogels, and the research fields related to them.
Collapse
Affiliation(s)
- Xingwu Mo
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Liliang Ouyang
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Zhuo Xiong
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Ting Zhang
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| |
Collapse
|
18
|
Carberry BJ, Hernandez JJ, Dobson A, Bowman CN, Anseth KS. Kinetic Analysis of Degradation in Thioester Cross-linked Hydrogels as a Function of Thiol Concentration, p Ka, and Presentation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Juan J. Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
19
|
Hernandez JJ, Dobson AL, Carberry BJ, Kuenstler AS, Shah PK, Anseth KS, White TJ, Bowman CN. Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via Thiol–Thioester Exchange. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan J. Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Adam L. Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin J. Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexa S. Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Parag K. Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|