1
|
Yu T, Yang Q, Peng B, Gu Z, Zhu D. Vascularized organoid-on-a-chip: design, imaging, and analysis. Angiogenesis 2024; 27:147-172. [PMID: 38409567 DOI: 10.1007/s10456-024-09905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook for future development.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Alver CG, Álvarez-Cubela S, Altilio I, Hutchison E, Warrner E, Viso ME, Vitale G, Oliver D, Pastori RL, Dominguez-Bendala J, Agarwal A. SliceChip: a benchtop fluidic platform for organotypic culture and serial assessment of human and rodent pancreatic slices. LAB ON A CHIP 2024; 24:1557-1572. [PMID: 38205530 PMCID: PMC10939771 DOI: 10.1039/d3lc00850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Enzymatically isolated pancreatic islets are the most commonly used ex vivo testbeds for diabetes research. Recently, precision-cut living slices of human pancreas are emerging as an exciting alternative because they maintain the complex architecture of the endocrine and exocrine tissues, and do not suffer from the mechanical and chemical stress of enzymatic isolation. We report a fluidic pancreatic SliceChip platform with dynamic environmental controls that generates a warm, oxygenated, and bubble-free fluidic pathway across singular immobilized slices with continuous deliver of fresh media and the ability to perform repeat serial perfusion assessments. A degasser ensures the system remains bubble-free while systemic pressurization with compressed oxygen ensures slice medium remains adequately oxygenated. Computational modeling of perfusion and oxygen dynamics within SliceChip guide the system's physiomimetic culture conditions. Maintenance of the physiological glucose dependent insulin secretion profile across repeat perfusion assessments of individual pancreatic slices kept under physiological oxygen levels demonstrated the culture capacity of our platform. Fluorescent images acquired every 4 hours of transgenic murine pancreatic slices were reliably stable and recoverable over a 5 day period due to the inclusion of a 3D-printed bioinert metallic anchor that maintained slice position within the SliceChip. Our slice on a chip platform has the potential to expand the useability of human pancreatic slices for diabetes pathogenesis and the development of new therapeutic approaches, while also enabling organotypic culture and assessment of other tissue slices such as brain and patient tumors.
Collapse
Affiliation(s)
- Charles G Alver
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Isabella Altilio
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Emily Hutchison
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Emma Warrner
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Mariana E Viso
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Giana Vitale
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - David Oliver
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Regeenes R, Rocheleau JV. Twenty years of islet-on-a-chip: microfluidic tools for dissecting islet metabolism and function. LAB ON A CHIP 2024; 24:1327-1350. [PMID: 38277011 DOI: 10.1039/d3lc00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Pancreatic islets are metabolically active micron-sized tissues responsible for controlling blood glucose through the secretion of insulin and glucagon. A loss of functional islet mass results in type 1 and 2 diabetes. Islet-on-a-chip devices are powerful microfluidic tools used to trap and study living ex vivo human and murine pancreatic islets and potentially stem cell-derived islet organoids. Devices developed over the past twenty years offer the ability to treat islets with controlled and dynamic microenvironments to mimic in vivo conditions and facilitate diabetes research. In this review, we explore the various islet-on-a-chip devices used to immobilize islets, regulate the microenvironment, and dynamically detect islet metabolism and insulin secretion. We first describe and assess the various methods used to immobilize islets including chambers, dam-walls, and hydrodynamic traps. We subsequently describe the surrounding methods used to create glucose gradients, enhance the reaggregation of dispersed islets, and control the microenvironment of stem cell-derived islet organoids. We focus on the various methods used to measure insulin secretion including capillary electrophoresis, droplet microfluidics, off-chip ELISAs, and on-chip fluorescence anisotropy immunoassays. Additionally, we delve into the various multiparametric readouts (NAD(P)H, Ca2+-activity, and O2-consumption rate) achieved primarily by adopting a microscopy-compatible optical window into the devices. By critical assessment of these advancements, we aim to inspire the development of new devices by the microfluidics community and accelerate the adoption of islet-on-a-chip devices by the wider diabetes research and clinical communities.
Collapse
Affiliation(s)
- Romario Regeenes
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, ON, Canada
| |
Collapse
|
4
|
Cohrs CM, Chen C, Atkinson MA, Drotar DM, Speier S. Bridging the Gap: Pancreas Tissue Slices From Organ and Tissue Donors for the Study of Diabetes Pathogenesis. Diabetes 2024; 73:11-22. [PMID: 38117999 PMCID: PMC10784654 DOI: 10.2337/dbi20-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/14/2023] [Indexed: 12/22/2023]
Abstract
Over the last two decades, increased availability of human pancreatic tissues has allowed for major expansions in our understanding of islet biology in health and disease. Indeed, studies of fixed and frozen pancreatic tissues, as well as efforts using viable isolated islets obtained from organ donors, have provided significant insights toward our understanding of diabetes. However, the procedures associated with islet isolation result in distressed cells that have been removed from any surrounding influence. The pancreas tissue slice technology was developed as an in situ approach to overcome certain limitations associated with studies on isolated islets or fixed tissue. In this Perspective, we discuss the value of this novel platform and review how pancreas tissue slices, within a short time, have been integrated in numerous studies of rodent and human islet research. We show that pancreas tissue slices allow for investigations in a less perturbed organ tissue environment, ranging from cellular processes, over peri-islet modulations, to tissue interactions. Finally, we discuss the considerations and limitations of this technology in its future applications. We believe the pancreas tissue slices will help bridge the gap between studies on isolated islets and cells to the systemic conditions by providing new insight into physiological and pathophysiological processes at the organ level. ARTICLE HIGHLIGHTS Human pancreas tissue slices represent a novel platform to study human islet biology in close to physiological conditions. Complementary to established technologies, such as isolated islets, single cells, and histological sections, pancreas tissue slices help bridge our understanding of islet physiology and pathophysiology from single cell to intact organ. Diverse sources of viable human pancreas tissue, each with distinct characteristics to be considered, are available to use in tissue slices for the study of diabetes pathogenesis.
Collapse
Affiliation(s)
- Christian M. Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Chunguang Chen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Denise M. Drotar
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
5
|
Wang L, Hu D, Xu J, Hu J, Wang Y. Complex in vitro Model: A Transformative Model in Drug Development and Precision Medicine. Clin Transl Sci 2023; 17:e13695. [PMID: 38062923 PMCID: PMC10828975 DOI: 10.1111/cts.13695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 02/02/2024] Open
Abstract
In vitro and in vivo models play integral roles in preclinical drug research, evaluation, and precision medicine. In vitro models primarily involve research platforms based on cultured cells, typically in the form of two-dimensional (2D) cell models. However, notable disparities exist between 2D cultured cells and in vivo cells across various aspects, rendering the former inadequate for replicating the physiologically relevant functions of human or animal organs and tissues. Consequently, these models failed to accurately reflect real-life scenarios post-drug administration. Complex in vitro models (CIVMs) refer to in vitro models that integrate a multicellular environment and a three-dimensional (3D) structure using bio-polymer or tissue-derived matrices. These models seek to reconstruct the organ- or tissue-specific characteristics of the extracellular microenvironment. The utilization of CIVMs allows for enhanced physiological correlation of cultured cells, thereby better mimicking in vivo conditions without ethical concerns associated with animal experimentation. Consequently, CIVMs have gained prominence in disease research and drug development. This review aimed to comprehensively examine and analyze the various types, manufacturing techniques, and applications of CIVM in the domains of drug discovery, drug development, and precision medicine. The objective of this study was to provide a comprehensive understanding of the progress made in CIVMs and their potential future use in these fields.
Collapse
Affiliation(s)
- Luming Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Danping Hu
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| | - Jinming Xu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Jian Hu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Yifei Wang
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| |
Collapse
|