1
|
Regan KT, Pounder A, Johnson RE, Murray MT, Glowacki HX, Wetmore SD, Manderville RA. Modular access to nucleobase GFP-surrogates: pH-responsive smart probes for ratiometric nucleic acid diagnostics. Chem Sci 2025; 16:6468-6479. [PMID: 40103717 PMCID: PMC11912499 DOI: 10.1039/d4sc07994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
We have utilized a modular on-strand aldol approach to synthesize chalcone-based fluorescent molecular rotors (FMRs) bearing phenolic oxygen donors that mimic the natural tyrosine (Tyr66) chromophore 4-hydroxybenzylidene-imidazolinone (HBI) within green fluorescent proteins (GFPs). Leveraging the FMRs' propensity to undergo non-radiative decay via twisted intramolecular charge transfer upon excitation within certain microenvironments, we have addressed the longstanding issues of poor brightness (ε max × Φ fl) and weak turn-on responses for GFP-surrogates within nucleic acids. To demonstrate its potential and lay the groundwork for future applications, these FMRs were incorporated into NarI12 and TBA15 oligonucleotides with canonical (A, C, T, G) or locked nucleic acids (LNAs) (TL, AL) as flanking bases. The resulting duplexes and G-quadruplexes (GQs) were studied using fluorescence spectroscopy, molecular dynamics simulations, and quantum mechanical calculations, yielding a comprehensive understanding of their structural and photophysical properties in DNA, DNA : RNA, and GQ contexts. Electron-rich chalcones favor neutral phenol excitation (ROH) to afford both phenol (ROH*) and phenolate (RO-*) emission, with the latter generated through an intermolecular excited-state proton transfer process, while electron-deficient chalcones serve as ratiometric excitation indicators, due to their photoacidity. The surrogates display strong turn-on responses (up to 154-fold) in a GQ → duplex topology switch with flanked LNAs, giving Φ fl up to 0.58 and molar brightness ∼ 15 000 cm-1 M-1 in the duplex. By synergizing the NA sequence and probe, we achieve a switchable ON-to-OFF photoinduced electron transfer, resulting in a 134-fold turn-on emission response to pH. Our findings are the first to optimize the performance of GFP-surrogates as internal nucleobase replacements and suggest multiple ways in which they may be useful tools for NA diagnostics.
Collapse
Affiliation(s)
- Keenan T Regan
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Austin Pounder
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Ryan E Johnson
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Hannah X Glowacki
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
2
|
Šoltysová M, Güixens-Gallardo P, Sieglová I, Soldánová A, Krejčiříková V, Fábry M, Brynda J, Khoroshyy P, Hocek M, Řezáčová P. Using environment-sensitive tetramethylated thiophene-BODIPY fluorophores in DNA probes for studying effector-induced conformational changes of protein-DNA complexes. RSC Chem Biol 2025:d4cb00260a. [PMID: 39822774 PMCID: PMC11734750 DOI: 10.1039/d4cb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in Bacillus subtilis through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription. The designed DNA probes exhibited distinctive responses to the binding and release of the protein, characterized by significant alterations in fluorescence lifetime. Through this method, we have identified l-lactate as the sole metabolite exerting a substantial modulating effect on the protein-DNA interaction and thus confirmed its role as an effector molecule. Moreover, we showed that our approach was able to follow conformation changes affecting affinity, which were not captured by other methods commonly used to study the protein-DNA interaction, such as electro-mobility shift assays and florescence anisotropy binding studies. This work underlines the potential of environment-sensitive fluorophore-linked nucleotide modifications, i.e. dCTBdp, for studying the dynamics and subtle changes of protein-DNA interactions.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Irena Sieglová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Anna Soldánová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Veronika Krejčiříková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
- Department of Organic Chemistry, Faculty of Science, Charles University Hlavova 8 CZ-12843 Prague 2 Czechia
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| |
Collapse
|
3
|
Bailie AE, Sansom HG, Fisher RS, Watabe R, Tor Y, Jones AC, Magennis SW. Ultrasensitive detection of a responsive fluorescent thymidine analogue in DNA via pulse-shaped two-photon excitation. Phys Chem Chem Phys 2024; 26:26823-26833. [PMID: 39404501 PMCID: PMC11476554 DOI: 10.1039/d4cp03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Fluorescent base analogues (FBAs) are versatile nucleic acid labels that can replace a native nucleobase, while maintaining base pairing and secondary structure. Following the recent demonstration that free FBAs can be detected at the single-molecule level, the next goal is to achieve this level of detection sensitivity in oligonucleotides. Due to the short-wavelength absorption of most FBAs, multiphoton microscopy has emerged as a promising approach to single-molecule detection. We report the multiphoton-induced fluorescence of 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (MeOthaU), a polarity-sensitive fluorescent thymidine analogue, as a nucleoside, and in two single-stranded deoxyribo-oligonucleotides, with and without their complementary strands. Ensemble steady-state and time-resolved measurements in dioxane, following one-photon and two-photon excitation, reveals both strongly and weakly emissive species, assigned as rotamers, while in Tris buffer there are additional non-emissive states, which are attributed to tautomeric forms populated in aqueous environments. The two-photon (2P) brightness for MeOthaU is highest as the free nucleoside in dioxane (10 GM) and lowest as the free nucleoside in Tris buffer (0.05 GM). The species-averaged 2P brightness values in DNA are higher for the single strands (0.66 and 0.82 GM for sequence context AXA and AXT, respectively, where X is MeOthaU) than in the duplex (0.31 and 0.25 GM for AXA and AXT, respectively). Using 2P microscopy with pulse-shaped broadband excitation, we were able to detect single- and double-stranded oligos with a molecular brightness of 0.8-0.9 kHz per molecule. This allowed the detection of as few as 7 DNA molecules in the focus, making it the brightest responsive FBA in an oligonucleotide reported to date.
Collapse
Affiliation(s)
- Alexandra E Bailie
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Henry G Sansom
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK.
| | - Rachel S Fisher
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Ryo Watabe
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anita C Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
4
|
Steinbuch KB, Cong D, Rodriguez AJ, Tor Y. Emissive Guanosine Analog Applicable for Real-Time Live Cell Imaging. ACS Chem Biol 2024; 19:1836-1841. [PMID: 39101365 PMCID: PMC11334113 DOI: 10.1021/acschembio.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
A new emissive guanosine analog CF3thG, constructed by a single trifluoromethylation step from the previously reported thG, displays red-shifted absorption and emission spectra compared to its precursor. The impact of solvent type and polarity on the photophysical properties of CF3thG suggests that the electronic effects of the trifluoromethyl group dominate its behavior and demonstrates its susceptibility to microenvironmental polarity changes. In vitro transcription initiations using T7 RNA polymerase, initiated with CF3thG, result in highly emissive 5'-labeled RNA transcripts, demonstrating the tolerance of the enzyme toward the analog. Viability assays with HEK293T cells displayed no detrimental effects at tested concentrations, indicating the safety of the analog for cellular applications. Live cell imaging of the free emissive guanosine analog using confocal microscopy was facilitated by its red-shifted absorption and emission and adequate brightness. Real-time live cell imaging demonstrated the release of the guanosine analog from HEK293T cells at concentration-gradient conditions, which was suppressed by the addition of guanosine.
Collapse
Affiliation(s)
- Kfir B. Steinbuch
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| | - Deyuan Cong
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| | - Anthony J. Rodriguez
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| | - Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| |
Collapse
|
5
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
6
|
Johnson RE, Murray MT, Bycraft LJ, Myler P, Wetmore SD, Manderville RA. Harnessing a 4-Formyl-Aniline Handle to Tune the Stability of a DNA Aptamer-Protein Complex via Fluorescent Surrogates. Bioconjug Chem 2023; 34:2066-2076. [PMID: 37857354 DOI: 10.1021/acs.bioconjchem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Interactions between DNA aptamers and protein targets hold promise for the development of pharmaceuticals and diagnostics. As such, the utilization of fluorescent nucleobase surrogates in studying aptamer-protein interactions is a powerful tool due to their ability to provide site-specific information through turn-on fluorescence. Unfortunately, previously described turn-on probes serving as nucleobase replacements have only been strongly disruptive to the affinity of aptamer-protein interactions. Herein, we present a modified TBA15 aptamer for thrombin containing a fluorescent surrogate that provides site-specific turn-on emission with low nanomolar affinity. The modification, referred to as AnBtz, was substituted at position T3 and provided strong turn-on emission (Irel ≈ 4) and brightness (ε·Φ > 20 000 cm-1 M-1) with an apparent dissociation constant (Kd) of 15 nM to afford a limit of detection (LOD) of 10 nM for thrombin in 20% human serum. The probe was selected through a modular "on-strand" synthesis process that utilized a 4-formyl-aniline (4FA) handle. Using this platform, we were able to enhance the affinity of the final aptamer conjugate by ∼30-fold in comparison with the initial conjugate design. Molecular dynamics simulations provide insight into the structural basis for this phenomenon and highlight the importance of targeting hydrophobic protein binding sites with fluorescent nucleobase surrogates to create new contacts with protein targets.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Lucas J Bycraft
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Peter Myler
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A Manderville
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Sawyer JM, Passow KT, Harki DA. Synthesis and photophysical characterization of fluorescent indole nucleoside analogues. RSC Adv 2023; 13:16369-16376. [PMID: 37266506 PMCID: PMC10230516 DOI: 10.1039/d3ra03457g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Fluorescent nucleosides are useful chemical tools for biochemical research and are frequently incorporated into nucleic acids for a variety of applications. The most widely utilized fluorescent nucleoside is 2-aminopurine-2'-deoxyribonucleoside (2APN). However, 2APN is limited by a moderate Stokes shift, molar extinction coefficient, and quantum yield. We recently reported 4-cyanoindole-2'-deoxyribonucleoside (4CIN), which offers superior photophysical characteristics in comparison to 2APN. To further improve upon 4CIN, a focused library of additional analogues combining the structural features of 2APN and 4CIN were synthesized and their photophysical properties were quantified. Nucleosides 2-6 were found to possess diverse photophysical properties with some features superior to 4CIN. In addition, the structure-function relationship data gained from 1-6 can inform the design of next-generation fluorescent indole nucleosides.
Collapse
Affiliation(s)
- Jacob M Sawyer
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| |
Collapse
|
8
|
Yang C, Slavětínská LP, Fleuti M, Klepetářová B, Tichý M, Gurská S, Pavliš P, Džubák P, Hajdúch M, Hocek M. Synthesis of Polycyclic Hetero-Fused 7-Deazapurine Heterocycles and Nucleosides through C-H Dibenzothiophenation and Negishi Coupling. J Am Chem Soc 2022; 144:19437-19446. [PMID: 36245092 PMCID: PMC9619403 DOI: 10.1021/jacs.2c07517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
![]()
A new approach for synthesizing polycyclic heterofused
7-deazapurine
heterocycles and the corresponding nucleosides was developed based
on C–H functionalization of diverse (hetero)aromatics with
dibenzothiophene-S-oxide followed by the Negishi
cross-cooupling with bis(4,6-dichloropyrimidin-5-yl)zinc. This cross-coupling
afforded a series of (het)aryl-pyrimidines that were converted to
fused deazapurine heterocycles through azidation and thermal cyclization.
The fused heterocycles were glycosylated to the corresponding 2′-deoxy-
and ribonucleosides, and a series of derivatives were prepared by
nucleophilic substitutions at position 4. Four series of new polycyclic
thieno-fused 7-deazapurine nucleosides were synthesized using this
strategy. Most of the deoxyribonucleosides showed good cytotoxic activity,
especially for the CCRF-CEM cell line. Phenyl- and thienyl-substituted
thieno-fused 7-deazapurine nucleosides were fluorescent, and the former
one was converted to 2′-deoxyribonucleoside triphosphate for
enzymatic synthesis of labeled oligonucleotides.
Collapse
Affiliation(s)
- Chao Yang
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Marianne Fleuti
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Tichý
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Petr Pavliš
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Michal Hocek
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic,E-mail:
| |
Collapse
|