1
|
Zhang J, Jia Y, Tong X, Zhou H, Zhang L, Yang Y, Ji X. Portable ratiometric fluorescence detection of Cu 2+and thiram. Methods Appl Fluoresc 2024; 12:035002. [PMID: 38587171 DOI: 10.1088/2050-6120/ad3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Food contaminants pose a danger to human health, but rapid, sensitive and reliable food safety detection methods can offer a solution to this problem. In this study, an optical fiber ratiometric fluorescence sensing system based on carbon dots (CDs) and o-phenylenediamine (OPD) was constructed. The ratiometric fluorescence response of Cu2+and thiram was carried out by the fluorescence resonance energy transfer (FRET) between CDs and 2,3-diaminophenazine (ox-OPD, oxidized state o-phenylenediamine). The oxidation of OPD by Cu2+resulted in the formation of ox-OPD, which quenched the fluorescence of CDs and exhibited a new emission peak at 573 nm. The formation of a [dithiocarbamate-Cu2+] (DTC-Cu2+) complex by reacting thiram with Cu2+, inhibits the OPD oxidation reaction triggered by Cu2+, thus turning off the fluorescence signal of OPD-Cu2+. The as-established detection system presented excellent sensitivity and selectivity for the detection of Cu2+and thiram in the ranges of 1 ∼ 100μM and 5 ∼ 50μM, respectively. The lowest detection limits were 0.392μM for Cu2+and 0.522μM for thiram. Furthermore, actual sample analysis indicated that the sensor had the potential for Cu2+and thiram assays in real sample analysis.
Collapse
Affiliation(s)
- Jiazhen Zhang
- School of Physical and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Yicong Jia
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Xuan Tong
- School of Physical and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Hangyu Zhou
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Le Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Yue Yang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
- Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunmsing 650500, People's Republic of China
| | - Xu Ji
- School of Physical and Electronic Information, Yunnan Normal University, Kunming, 650500, People's Republic of China
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, People's Republic of China
- Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunmsing 650500, People's Republic of China
| |
Collapse
|