1
|
Patterson E, Stokes P, Cutajar D, Rosenfeld A, Baines J, Metcalfe P, Powers M. High-resolution entry and exit surface dosimetry in a 1.5 T MR-linac. Phys Eng Sci Med 2023; 46:787-800. [PMID: 36988905 DOI: 10.1007/s13246-023-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin™, for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin™ entry surface doses, relative to Dmax, were (9.9 ± 0.2)%, (10.1 ± 0.3)%, (11.3 ± 0.6)%, (12.9 ± 1.0)%, and (13.4 ± 1.0)% for 1 × 1 cm2, 3 × 3 cm2, 5 × 5 cm2, 10 × 10 cm2, and 22 × 22 cm2 fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin™ measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 × 10 cm2 field size using the MOSkin™ and 17.9% for the 22 × 22 cm2 field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin™ detector for transverse MR-linac surface dosimetry.
Collapse
Affiliation(s)
- E Patterson
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - P Stokes
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - D Cutajar
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - A Rosenfeld
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - J Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - P Metcalfe
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - M Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
2
|
Verification using in vivo optically stimulated luminescent dosimetry of the predicted skin surface dose in patients receiving postmastectomy radiotherapy. Med Dosim 2020; 46:e1-e6. [PMID: 33941320 DOI: 10.1016/j.meddos.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to evaluate whether dose to the skin surface underneath bolus, was accurately predicted by a 3D treatment planning system (TPS) in patients receiving 50 Gy/25# postmastectomy radiotherapy (PMRT) using optically stimulated luminescent dosimetry (OSLD) for verification. In vivo dosimetry using OSLDs was performed in 20 consecutive patients receiving PMRT. An array of 9 OSLDs were applied to the chest wall or neobreast in a grid arrangement. Dosimetry data were recorded on 3 separate treatment fractions, averaged, and extrapolated to 25 fractions. On the 3D TPS, the predicted dose was calculated using the departmental planning algorithm at points corresponding to the OSLDs. The mean within patient difference between the planned and measured dose at each of the 9 points was calculated and Bland-Altman limits of agreement used to quantify the extent of agreement. Paired t-tests were used to test for evidence of systematic bias at each point. The coefficient of variation of the 3 OSLD readings per patient at each of the 9 points was low for 8 points (≤4.4%) demonstrating comparable dose received per fraction at these points. The mean ratio between the in vivo measured extrapolated OSLD (IVME OSLD) dose and the planned TPS dose ranged between 0.97 and 0.99 across all points (standard deviation range 0.05 to 0.08). The mean within patient difference between the IVME OSLD and planned TPS was <1 Gy at 7 of the 9 points and the t-test for evidence of systematic bias was significant (p = 0.03) at only 1 of the 9 points. Our commercially available 3D TPS closely predicted PMRT skin surface dose underneath bolus as verified by OSLDs. At all sites, the average ratio of delivered to predicted dose was >0.97 but <1. This practical and feasible OSLD assessment of only 3 of 25 fractions facilitates quality assurance of a TPS in predicting skin surface dose under bolus.
Collapse
|
4
|
Galván De la Cruz O, Rodríguez-Ávila M, Rivera-Montalvo T, García Garduño O. Measurement of percentage dose at the surface for a 6 MV photon beam. Rep Pract Oncol Radiother 2019; 24:585-592. [PMID: 31660051 PMCID: PMC6807031 DOI: 10.1016/j.rpor.2019.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/09/2019] [Accepted: 09/21/2019] [Indexed: 11/19/2022] Open
Abstract
AIM To evaluate if a radiochromic film (RF) Gafchromic EBT3 is suitable for surface dose measurements of radiotherapy treatments performed with a 6 MV linear accelerator. Two aspects of RF were analyzed, beam energy dependence and surface dose determination. BACKGROUND The measurements done at the surface or near the radiation source are done without charged electronic equilibrium and also have contribution of electron contamination. The detectors used for these measurements should not alter the dose to the target. To counteract these dosimetric problems it is proposed to do the measurements with radiochromic films which are thin detectors and have tissue equivalent properties. MATERIALS AND METHODS The measurements were done using a Novalis linear accelerator (LINAC) with nominal energy of 6 MV. To determine the surface dose, the total scatter factors (TSF) of three different field sizes were measured in a water phantom at 5 cm depth. Energy dependence of EBT3 was studied at three different depths, using a solid water phantom. The surface measurements were done with the RF for the same field sizes of the TSF measurements. The value of the percentage depth dose was calculated normalizing the doses measured in the RF with the LINAC output, at 5 cm depth, and the TSF. RESULTS The radiochromic films showed almost energy independence, the differences between the curves are 1.7% and 1.8% for the 1.5 cm and 10 cm depth, respectively. The percentage depth doses values at the surface measured for the 10 cm × 10 cm, 5 cm × 5 cm and 1 cm × 1 cm were 26.1 ± 1.3%, 21.3 ± 2.4% and 20.2 ± 2.6%, respectively. CONCLUSIONS The RF-EBT3 seems to be a detector suitable for measurements of the dose at the surface. This suggests that RF-EBT3 films might be good candidates as detectors for in vivo dosimetry.
Collapse
Affiliation(s)
- O.O. Galván De la Cruz
- Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, México City, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Legaria 694, México city, México
| | - M.A. Rodríguez-Ávila
- Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, Instituto de Física, Circuito de la Investigación Científica s/n. Ciudad Universitaria, 04510, Mexico City, México
| | - T. Rivera-Montalvo
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Legaria 694, México city, México
| | - O.A. García Garduño
- Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, México City, México
| |
Collapse
|