1
|
Kothawade S, Padwal V. Cutting-edge 3D printing in immunosensor design for early cancer detection. Mikrochim Acta 2024; 192:42. [PMID: 39738752 DOI: 10.1007/s00604-024-06880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Cancer is a major cause of death globally, and early detection is a key to improving outcomes. Traditional diagnostic methods have limitations such as being invasive and lacking sensitivity. Immunosensors, which detect cancer biomarkers using antibodies, offer a solution with high sensitivity and selectivity. When combined with 3D printing, these immunosensors can be customized to detect specific cancer markers, creating rapid, cost-effective, and scalable diagnostic tools. The article reviews the principles behind immunosensors, different 3D fabrication methods such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), and discusses how functionalization strategies, such as surface modifications, can enhance the sensitivity of these devices. The integration of 3D printing allows for the creation of complex sensor structures, offering advantages such as customization, rapid prototyping, and multi-material printing. These advancements make immunosensors arrays highly promising for early cancer detection, tumor profiling, and personalized medicine. The article also explores challenges like scalability, material biocompatibility, and the need for clinical validation. Future perspectives suggest the potential of integrating nanomaterials, multiplexed detection, and wearable technology to further improve the performance and accessibility of these diagnostic tools.
Collapse
Affiliation(s)
- Sachin Kothawade
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India.
| | - Vijaya Padwal
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India
| |
Collapse
|
2
|
Tandon S, Sharma M, Kasar P, Kala A. A cloud-based precision oncology framework for whole genome sequence analysis. Comput Biol Chem 2024; 110:108062. [PMID: 38554501 DOI: 10.1016/j.compbiolchem.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Cancer is one of the wide-ranging diseases which have a high mortality rate impacting globally. This scenario can be switched by early detection and correct precision treatment, a major concern for cancer patients. Clinicians can figure out the best-suited treatments for cancer patients by analyzing the patient's genome, which will treat the patient well and minimize the chances of side effects as well. Therefore, we have developed a fast, robust, and efficient solution as our precision oncology framework based on the whole genome sequencing of the individual's DNA. This platform can perform the entire genomic analysis, starting from the quality assessment of the input file to the variant annotation and functional prediction, followed by a certain level of interpretation. This analysis helps in the molecular profiling of the tumors for the identification of the targetable alterations. It takes in FASTQ or BAM file as an input and provides us with two output reports: a primary report, which consists of the patients' details, a summary of the analysis, and a secondary report, which is an elaborated report comprised of numerous results obtained from the analysis such as base changes, codon changes, amino acid changes, TMB analysis, MSI analysis, the variant frequency with its effects and impacts, affected biomarkers, etc. This framework can be effectively utilized for cancer treatment guidance, identification and validation of novel biomarkers, oncology research & development, genomic analysis, and gene manipulation.
Collapse
Affiliation(s)
- Saloni Tandon
- Celebal Technologies Private Limited, 7th Floor Corporate tower, JLN Marg, Near Jawahar Circle, Malviya Nagar, Jaipur, Rajasthan 302017, India.
| | - Medha Sharma
- Celebal Technologies Private Limited, 7th Floor Corporate tower, JLN Marg, Near Jawahar Circle, Malviya Nagar, Jaipur, Rajasthan 302017, India
| | - Pratik Kasar
- Celebal Technologies Private Limited, 7th Floor Corporate tower, JLN Marg, Near Jawahar Circle, Malviya Nagar, Jaipur, Rajasthan 302017, India
| | - Anirudh Kala
- Celebal Technologies Private Limited, 7th Floor Corporate tower, JLN Marg, Near Jawahar Circle, Malviya Nagar, Jaipur, Rajasthan 302017, India
| |
Collapse
|
3
|
Palakollu VN, Veera Manohara Reddy Y, Shekh MI, Vattikuti SVP, Shim J, Karpoormath R. Electrochemical immunosensing of tumor markers. Clin Chim Acta 2024; 557:117882. [PMID: 38521164 DOI: 10.1016/j.cca.2024.117882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The rising incidence and mortality rates of cancer have led to a growing need for precise and prompt early diagnostic approaches to effectively combat this disease. However, traditional methods employed for detecting tumor cells, such as histopathological and immunological techniques, are often associated with complex procedures, high analytical expenses, elevated false positive rates, and a dependence on experienced personnel. Tracking tumor markers is recognized as one of the most effective approaches for early detection and prognosis of cancer. While onco-biomarkers can also be produced in normal circumstances, their concentration is significantly elevated when tumors are present. By monitoring the levels of these markers, healthcare professionals can obtain valuable insights into the presence, progression, and response to treatment of cancer, aiding in timely diagnosis and effective management. This review aims to provide researchers with a comprehensive overview of the recent advancements in tumor markers using electrochemical immunosensors. By highlighting the latest developments in this field, researchers can gain a general understanding of the progress made in the utilization of electrochemical immunosensors for detecting tumor markers. Furthermore, this review also discusses the current limitations associated with electrochemical immunosensors and offers insights into paving the way for further improvements and advancements in this area of research.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru 560064, India; Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Mehdihasan I Shekh
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
4
|
C S A, Kandasubramanian B. Hydrogel as an advanced energy material for flexible batteries. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anju C S
- CIPET, Institute of Petrochemicals Technology (IPT), Kochi, India
| | | |
Collapse
|
5
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
6
|
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Prakash NJ, Mane PP, George SM, Kandasubramanian B. Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomater Sci Eng 2021; 7:2015-2042. [PMID: 33861079 DOI: 10.1021/acsbiomaterials.1c00080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of flexible, biocompatible, and environment-friendly sensors has attracted a significant amount of scientific interest for the past few decades. Among all the natural materials, silk fibroin (SF), due to its tunable biodegradability, biocompatibility, ease of processing, presence of functional groups, and controllable dimensions, has opened up opportunities for immobilizing multitudinous biomolecules and conformability to the skin, among other attractive opportunities. The silk fibroins also offer good physical properties, such as superior toughness and tensile strength. The sensors made of SF as an immobilization matrix have demonstrated excellent analytical performance, sensing even at low concentrations. The significant advantage of silk fibroins is the presence of functional groups along with a controllable conformation transition that enables immobilization of receptor molecules using silk fibroins as an immobilization matrix enables us to entrap the receptor molecules without using any chemical reagents. This review encompasses a detailed discussion on sensors, the advantages of using silk fibroins as an immobilization matrix for various receptors, their applications, and the future research scope in this state-of-the-art technology based upon the explorable applications for silk fibroin-based sensors.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| | - Prathamesh Parshuram Mane
- Department of Fibers and Textiles Processing Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Suchi Mercy George
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| |
Collapse
|
8
|
Dahiya T, Yadav S, Yadav N, Mann A, Sharma M, Rana J. Monitoring of BNP cardiac biomarker with major emphasis on biosensing methods: A review. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|