1
|
Yu H, Jafari M, Mujahid A, Garcia CF, Shah J, Sinha R, Huang Y, Shakiba D, Hong Y, Cheraghali D, Pryce JRS, Sandler JA, Elson EL, Sacks JM, Genin GM, Alisafaei F. Expansion limits of meshed split-thickness skin grafts. Acta Biomater 2025; 191:325-335. [PMID: 39581335 DOI: 10.1016/j.actbio.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Split-thickness skin grafts are widely used to treat chronic wounds. Procedure design requires surgeons to predict how much a patch of the patient's own skin expands when it is meshed with rows of slits and stretched over a larger wound area. Accurate prediction of graft expansion remains a challenge, with current models overestimating the actual expansion, leading to suboptimal outcomes. Inspired by the principles of mechanical metamaterials, we developed a model that distinguishes between the kinematic rearrangement of structural elements and their stretching, providing a more accurate prediction of skin graft expansion. Our model was validated against extensive data from skin graft surgeries, demonstrating vastly superior predictive capability compared to existing methods. This metamaterial-inspired approach enables informed decision-making for potentially improving healing outcomes. STATEMENT OF SIGNIFICANCE: Accurately predicting the expansion of meshed skin grafts is crucial for minimizing patient trauma and optimizing healing outcomes in reconstructive surgery. However, current quantitative models, which treat grafts as tessellated trusses of rigid bars, fail to accurately estimate graft expansion. We have uncovered the mechanisms underlying skin graft expansion and developed a straightforward method based on these findings. This method, designed for practical use by surgeons, provides accurate predictions of graft expansion, as validated against extensive data from skin graft surgeries.
Collapse
Affiliation(s)
- Haomin Yu
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Mohammad Jafari
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Aliza Mujahid
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Chelsea F Garcia
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Jaisheel Shah
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Riya Sinha
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Yuxuan Huang
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Biomedical Engineering, Washington University in St. Louis, USA
| | - Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Pathology, Johns Hopkins University, USA
| | - Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Danial Cheraghali
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - John R S Pryce
- Department of Mechanical Engineering, New Jersey Institute of Technology, USA
| | - Jacob A Sandler
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA
| | - Elliot L Elson
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, USA
| | - Justin M Sacks
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, USA; Department of Biomedical Engineering, Washington University in St. Louis, USA.
| | - Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, USA; Department of Mechanical Engineering, New Jersey Institute of Technology, USA.
| |
Collapse
|
2
|
Gupta V, Garg A, Tewari N, Srivastav S, Chanda A. Development of patient-specific finite element model for study of composite dental implants. Biomed Phys Eng Express 2024; 10:025035. [PMID: 38350117 DOI: 10.1088/2057-1976/ad28ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
Traumatic dental injuries can occur due to various reasons such as accidents, sports injuries, fights, falls, and others. These injuries can affect the teeth, gums, and surrounding tissues, and can range from minor chips and cracks to severe fractures, dislocations, and avulsions (when the tooth is completely knocked out of the socket). The most common way to address this is by replacing affected teeth with dental implants. The purpose of this research is to evaluate the use of composite materials in dental implants and compare them with the traditionally used materials using a patient specific cone beam computed tomography (CBCT) based finite element model (FEM). To conduct this research, two different implant groups i.e., traditional implant and composite implant were designed using Titanium grade 4, zirconium oxide-reinforced lithium silicate (ZLS), and Zirconia (ZrO2). Six dental implants were designed namely Ti implant, ZLS implant, ZrO2implant, Ti-ZrO2composite, Ti-ZLS composite, and ZLS-ZrO2composite using 3D modelling software. Detailed full-scale 3D models of patient specific dental implant were developed and traumatic loading conditions were applied to the enamel of central incisor teeth or crown of dental implant, and maxilla was constrained in all directions. It was found that the use of composite materials for dental implants can reduce the stresses over the surface of abutment and implant as compared to traditional implants. The detailed models developed as a part of this study can advance the research on dental implants, and with further experimental validation allow the use of composite materials for fabrication of more stable dental implants.
Collapse
Affiliation(s)
- Vivek Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Anshika Garg
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Nitesh Tewari
- Department of Pediatric and Preventive Dentistry, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | | | - Arnab Chanda
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), Delhi, India
| |
Collapse
|