1
|
Whelan PR, De Fazio D, Pasternak I, Thomsen JD, Zelzer S, Mikkelsen MO, Booth TJ, Diekhöner L, Sassi U, Johnstone D, Midgley PA, Strupinski W, Jepsen PU, Ferrari AC, Bøggild P. Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy. Sci Rep 2024; 14:3163. [PMID: 38326379 PMCID: PMC10850153 DOI: 10.1038/s41598-024-51548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/06/2024] [Indexed: 02/09/2024] Open
Abstract
Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects. We compare the charge carrier mean free path determined by THz-TDS with the average defect distance assessed by Raman spectroscopy, and the grain boundary dimensions as determined by transmission electron microscopy. The results indicate that even small angle orientation variations below 5° within graphene grains influence the scattering behavior, consistent with significant backscattering contributions from grain boundaries.
Collapse
Affiliation(s)
- Patrick R Whelan
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Domenico De Fazio
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy
| | - Iwona Pasternak
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
- Vigo System S.A., 129/133 Poznanska Str, 05-850, Ozarow Mazowiecki, Poland
| | - Joachim D Thomsen
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark
| | - Steffen Zelzer
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Martin O Mikkelsen
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Timothy J Booth
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, 2800, Kongens Lyngby, Denmark
| | - Lars Diekhöner
- Department of Materials and Production, Aalborg University, Skjernvej 4A, 9220, Aalborg, Denmark
| | - Ugo Sassi
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Duncan Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Wlodek Strupinski
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
- Vigo System S.A., 129/133 Poznanska Str, 05-850, Ozarow Mazowiecki, Poland
| | - Peter U Jepsen
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, 2800, Kongens Lyngby, Denmark
- DTU Fotonik, Technical University of Denmark, Ørsteds Plads 343, 2800, Kongens Lyngby, Denmark
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Peter Bøggild
- DTU Physics, Technical University of Denmark, Fysikvej, Bld. 309, 2800, Kongens Lyngby, Denmark.
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Krasavin SE, Osipov VA. Electrical resistivity of polycrystalline graphene: effect of grain-boundary-induced strain fields. Sci Rep 2022; 12:14553. [PMID: 36008503 PMCID: PMC9411566 DOI: 10.1038/s41598-022-18604-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
We have revealed the decisive role of grain-boundary-induced strain fields in electron scattering in polycrystalline graphene. To this end, we have formulated the model based on Boltzmann transport theory which properly takes into account the microscopic structure of grain boundaries (GB) as a repeated sequence of heptagon–pentagon pairs. We show that at naturally low GB charges the strain field scattering dominates and leads to physically reasonable and, what is important, experimentally observable values of the electrical resistivity. It ranges from 0.1 to 10 k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega$$\end{document}Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu m$$\end{document}μm for different types of symmetric GBs with a size of 1 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μm and has a strong dependence on misorientation angle. For low-angle highly charged GBs, two scattering mechanisms may compete. The resistivity increases markedly with decreasing GB size and reaches values of 60 k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega$$\end{document}Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μm and more. It is also very sensitive to the presence of irregularities modeled by embedding of partial disclination dipoles. With significant distortion, we found an increase in resistance by more than an order of magnitude, which is directly related to the destruction of diffraction on the GB. Our findings may be of interest both in the interpretation of experimental data and in the design of electronic devices based on poly- and nanocrystalline graphene.
Collapse
Affiliation(s)
- S E Krasavin
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia, 141980.
| | - V A Osipov
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia, 141980
| |
Collapse
|