1
|
Polonelli L, Beninati C, Teti G, Felici F, Ciociola T, Giovati L, Sperindè M, Passo CL, Pernice I, Domina M, Arigò M, Papasergi S, Mancuso G, Conti S, Magliani W. Yeast killer toxin-like candidacidal Ab6 antibodies elicited through the manipulation of the idiotypic cascade. PLoS One 2014; 9:e105727. [PMID: 25162681 PMCID: PMC4146504 DOI: 10.1371/journal.pone.0105727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
A mouse anti-anti-anti-idiotypic (Id) IgM monoclonal antibody (mAb K20, Ab4), functionally mimicking a Wyckerhamomyces anomalus (Pichia anomala) killer toxin (KT) characterized by fungicidal activity against yeasts presenting specific cell wall receptors (KTR) mainly constituted by β-1,3-glucan, was produced from animals presenting anti-KT Abs (Ab3) following immunization with a rat IgM anti-Id KT-like mAb (mAb K10, Ab2). MAb K10 was produced by immunization with a KT-neutralizing mAb (mAb KT4, Ab1) bearing the internal image of KTR. MAb K20, likewise mAb K10, proved to be fungicidal in vitro against KT-sensitive Candida albicans cells, an activity neutralized by mAb KT4, and was capable of binding to β-1,3-glucan. MAb K20 and mAb K10 competed with each other and with KT for binding to C. albicans KTR. MAb K20 was used to identify peptide mimics of KTR by the selection of phage clones from random peptide phage display libraries. Using this strategy, four peptides (TK 1-4) were selected and used as immunogen in mice in the form of either keyhole limpet hemocyanin (KLH) conjugates or peptide-encoding minigenes. Peptide and DNA immunization could induce serum Abs characterized by candidacidal activity, which was inhibited by laminarin, a soluble β-1,3-glucan, but not by pustulan, a β-1,6-glucan. These findings show that the idiotypic cascade can not only overcome the barrier of animal species but also the nature of immunogens and the type of technology adopted.
Collapse
Affiliation(s)
- Luciano Polonelli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Concetta Beninati
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Teti
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Franco Felici
- Dipartimento di Bioscienze e Territorio (DiBT), Università degli Studi del Molise, Contrada Fonte Lappone, Pesche (IS), Italy
| | - Tecla Ciociola
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Laura Giovati
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Martina Sperindè
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Carla Lo Passo
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Ida Pernice
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Maria Domina
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Milena Arigò
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Salvatore Papasergi
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Stefania Conti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Walter Magliani
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
2
|
Ramos AS, Parise CB, Travassos LR, Han SW, de Campos-Lima PO, de Moraes JZ. The idiotype (Id) cascade in mice elicited the production of anti-R24 Id and anti-anti-Id monoclonal antibodies with antitumor and protective activity against human melanoma. Cancer Sci 2010; 102:64-70. [PMID: 21070480 DOI: 10.1111/j.1349-7006.2010.01771.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gangliosides have been considered as potential targets for immunotherapy because they are overexpressed on the surface of melanoma cells. However, immunization with purified gangliosides results in a very poor immune response, usually mediated by IgM antibodies. To overcome this limitation, we immunized mice with R24, a monoclonal antibody (mAb) that recognizes the most tumor-restricted ganglioside (GD3); our goal was to obtain anti-idiotype (Id) antibodies bearing the internal image of GD3. Animals produced anti-Id and anti-anti-Id antibodies. Both anti-Id and anti-anti-Id antibodies were able to inhibit mAb R24 binding to GD3. In addition, the anti-anti-Id antibodies were shown to recognize GD3 directly. Anti-Id and anti-anti-Id mAb were then selected from two fusion experiments for evaluation. The most interesting finding emerged from the characterization of the anti-anti-Id mAb 5.G8. It was shown to recognize two different GD3-expressing human melanoma cell lines in vitro and to mediate tumor cell cytotoxicity by complement activation and antibody-dependent cellular cytotoxicity. The biological activity of the anti-anti-Id mAb was also tested in a mouse tumor model, in which it was shown to be a powerful growth inhibitor of melanoma cells. Thus, activity of the anti-anti-Id mAb 5.G8 matched that of the prototypic anti-GD3 mAb R24 both in vitro and in vivo. Altogether, our results indicate that the idiotype approach might produce high affinity, specific and very efficient antitumor immune responses.
Collapse
Affiliation(s)
- Angelita S Ramos
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Muller S. AVOIDING DECEPTIVE IMPRINTING OF THE IMMUNE RESPONSE TO HIV-1 INFECTION IN VACCINE DEVELOPMENT. Int Rev Immunol 2009; 23:423-36. [PMID: 15370274 DOI: 10.1080/08830180490432802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lymphocyte clonal restriction is caused by priming the immune system with an antigen and has been referred to infectious disease study as "original antigenic sin" (OAS), described first for influenza by Francis. OAS is a dominant feature of a normal immune response. Benefits of OAS come from the initial contact with the pathogen, which induces immunological memory. Memory is achieved by priming B and T cells of an immunologically naïve host, and confers protection against infection with the antigen-related pathogen. Thus, a restricted antibody response to viral or parasite antigens is not per se pathogenic. However, the interplay between a "locked-in" immune response and the high genetic variation of the pathogenic agent can result in a deception of the immune system. In the following, clonal restriction of the immune response to HIV is described by giving examples of restricted anti-HIV antibody formation in maternally infected children. Clonal restriction results in host resistance of infected individuals to emerging HIV variants and quasispecies. The problems of classical approaches of vaccine design in AIDS and the lack of protection in vaccinated patients is reviewed.
Collapse
|
5
|
Funk GA, Fischer M, Joos B, Opravil M, Günthard HF, Ledergerber B, Bonhoeffer S. Quantification of in vivo replicative capacity of HIV-1 in different compartments of infected cells. J Acquir Immune Defic Syndr 2001; 26:397-404. [PMID: 11391158 DOI: 10.1097/00126334-200104150-00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Based on a mathematical model, we analyze the dynamics of CD4+ cells, actively, latently, persistently, and defectively infected cells and plasma virus after initiation of antiretroviral therapy in 14 HIV-1-infected asymptomatic patients. By simultaneous fitting of our model to clinical data of plasma HIV-1 RNA, peripheral blood mononuclear cell (PBMC)-gag RNA, proviral DNA, and CD4+ cell counts, we estimate kinetic parameters to determine the basic reproductive rate (R0) of the virus in different infected cell compartments as a measure of the replicative capacity of the virus in vivo. We find that the basic reproductive rate is larger than 1 before treatment only in actively infected cells (mean R0(act) approximately 2.46) indicating that only in this compartment the virus can maintain an ongoing infection. In latently and persistently infected cells the basic reproductive rate is considerably smaller (R0(lat) approximately 0.03 and R0(pers) approximately 0.008, respectively) indicating that these compartments contribute little to the total basic reproductive rate and cannot maintain an ongoing infection in absence of actively infected cells.
Collapse
Affiliation(s)
- G A Funk
- Department of Theoretical and Computational Biology, Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|