1
|
Schlidt K, Asgardoon M, Febre-Alemañy DA, El-Mallah JC, Waldron O, Dawes J, Agrawal S, Landmesser ME, Ravnic DJ. Surgical Bioengineering of the Microvasculature and Challenges in Clinical Translation. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40171780 DOI: 10.1089/ten.teb.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Tissue and organ dysfunction are major causes of worldwide morbidity and mortality with all medical specialties being impacted. Tissue engineering is an interdisciplinary field relying on the combination of scaffolds, cells, and biologically active molecules to restore form and function. However, clinical translation is still largely hampered by limitations in vascularization. Consequently, a thorough understanding of the microvasculature is warranted. This review provides an overview of (1) angiogenesis, including sprouting angiogenesis, intussusceptive angiogenesis, vascular remodeling, vascular co-option, and inosculation; (2) strategies for vascularized engineered tissue fabrication such as scaffold modulation, prevascularization, growth factor utilization, and cell-based approaches; (3) guided microvascular development via scaffold modulation with electromechanical cues, 3D bioprinting, and electrospinning; (4) surgical approaches to bridge the micro- and macrovasculatures in order to hasten perfusion; and (5) building specific vasculature in the context of tissue repair and organ transplantation, including skin, adipose, bone, liver, kidney, and lung. Our goal is to provide the reader with a translational overview that spans developmental biology, tissue engineering, and clinical surgery.
Collapse
Affiliation(s)
- Kevin Schlidt
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mohamadhossein Asgardoon
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - David A Febre-Alemañy
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Jessica C El-Mallah
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Olivia Waldron
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Jazzmyn Dawes
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Shailaja Agrawal
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mary E Landmesser
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Dino J Ravnic
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Jordao A, Cléret D, Dhayer M, Le Rest M, Cao S, Rech A, Azaroual N, Drucbert AS, Maboudou P, Dekiouk S, Germain N, Payen J, Guerreschi P, Marchetti P. Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study. Biomedicines 2023; 11:3337. [PMID: 38137558 PMCID: PMC10741522 DOI: 10.3390/biomedicines11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.
Collapse
Affiliation(s)
- Amélia Jordao
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Damien Cléret
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Mélanie Dhayer
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
| | - Mégann Le Rest
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Shengheng Cao
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Alexandre Rech
- University of Lille, Faculté de Pharmacie, Plateau RMN, UFR3S, F-59000 Lille, France
| | - Nathalie Azaroual
- University of Lille, ULR 7365–GRITA–Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées, F-59000 Lille, France;
| | - Anne-Sophie Drucbert
- U 1008 Controlled Drug Delivery Systems and Biomaterials, Inserm, F-59000 Lille, France
| | | | - Salim Dekiouk
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Nicolas Germain
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Julien Payen
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Pierre Guerreschi
- U 1008 Controlled Drug Delivery Systems and Biomaterials, Inserm, F-59000 Lille, France
- Service de Chirurgie Plastique, CHU Lille, F-59000 Lille, France
| | - Philippe Marchetti
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| |
Collapse
|
3
|
Das D, Lawrence WR, Diaz-Starokozheva L, Salazar-Puerta A, Ott N, Goebel ER, Damughtala A, Vidal P, Gallentine S, Moore JT, Kayuha D, Mendonca NC, Albert JB, Houser R, Johnson J, Powell H, Higuita-Castro N, Stanford KI, Gallego-Perez D. Injectable pulverized electrospun poly(lactic-co-glycolic acid) fibers improve human adipose tissue engraftment and volume retention. J Biomed Mater Res A 2023; 111:1722-1733. [PMID: 37326365 PMCID: PMC10527741 DOI: 10.1002/jbm.a.37581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Autologous adipose tissue is commonly used for tissue engraftment for the purposes of soft tissue reconstruction due to its relative abundance in the human body and ease of acquisition using liposuction methods. This has led to the adoption of autologous adipose engraftment procedures that allow for the injection of adipose tissues to be used as a "filler" for correcting cosmetic defects and deformities in soft tissues. However, the clinical use of such methods has several limitations, including high resorption rates and poor cell survivability, which lead to low graft volume retention and inconsistent outcomes. Here, we describe a novel application of milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers, which can be co-injected with adipose tissue to improve engraftment outcomes. These PLGA fibers had no significant negative impact on the viability of adipocytes in vitro and did not elicit long-term proinflammatory responses in vivo. Furthermore, co-delivery of human adipose tissue with pulverized electrospun PLGA fibers led to significant improvements in reperfusion, vascularity, and retention of graft volume compared to injections of adipose tissue alone. Taken together, the use of milled electrospun fibers to enhance autologous adipose engraftment techniques represents a novel approach for improving upon the shortcomings of such methods.
Collapse
Affiliation(s)
- Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - William R. Lawrence
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ludmila Diaz-Starokozheva
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Ana Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Neil Ott
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Erin R. Goebel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Abhishek Damughtala
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Summer Gallentine
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jordan T. Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Natalia C. Mendonca
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jared B. Albert
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Robert Houser
- Cosmetic & Plastic Surgery of Columbus, Columbus, OH, USA
| | | | - Heather Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Shriners Hospitals-Ohio, Dayton, OH, USA
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Alonge EO, Guo C, Wang Y, Zhang H. The Mysterious Role of Epidural Fat Tissue in Spine Surgery: A Comprehensive Descriptive Literature Review. Clin Spine Surg 2023; 36:1-7. [PMID: 34966038 DOI: 10.1097/bsd.0000000000001290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Though both neurosurgeons and orthopedic spinal surgeons are keenly aware of the clinical importance of epidural fat (EF), surgical practice varies amongst individual surgeons and across both fields. Thus, an in-depth understanding of the anatomical structure and composition of EF is vital, as it will play a significant role in the therapeutic management and the surgical choice of treatment. OBJECTIVE We aim to extensively review the anatomical and biological properties of EF and further outline the surgical importance of EF management. STUDY METHODOLOGY (i) MEDLINE search 1966-July 2019. Keywords: Review of the Literature. Authorship, Meta-analysis, Descriptive/Narrative overview; (ii) CINAHL search from 1982 to May 2019. Keywords: Review of the Literature spinal epidural fat; Authorship; Meta-analysis; Descriptive/Narrative overview; (iii) Hand searches of the references of retrieved literature; (iv) Personal and college libraries were searched for texts on research methods and literature reviews; and (v) 200 articles were downloaded, 50 were excluded because of similarity of topics and also because of new update on the same topics. (vi) Discussions with experts in the field of reviews of the literature. DISCUSSION Though excessive or reductive amounts of EF usually exacerbates neurological symptoms and lead to various pathologic conditions such as spinal epidural lipomatosis, but there is no basic science, experimental, or clinical research that proves the role of EF in the aforementioned pathologic situations. CONCLUSION Anatomical illustration, biological function and properties of EF knowledge may lead to changes in the stages of the surgical approach to avoid postoperative complications. However, the role of EF is exclusively bound to a scientific hypothesis as one cannot be sure if an excessive or reductive amount in EF is entirely responsible for the pathologic findings, or just only an incidental finding.
Collapse
Affiliation(s)
- Emmanuel O Alonge
- Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | | | | | | |
Collapse
|
5
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Cheng M, Janzekovic J, Mohseni M, Medeiros Savi F, McGovern J, Galloway G, Wong C, Saifzadeh S, Wagels M, Hutmacher DW. A Preclinical Animal Model for the Study of Scaffold-Guided Breast Tissue Engineering. Tissue Eng Part C Methods 2021; 27:366-377. [PMID: 33906394 DOI: 10.1089/ten.tec.2020.0387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Scaffold-guided breast tissue engineering (SGBTE) has the potential to transform reconstructive breast surgery. Currently, there is a deficiency in clinically relevant animal models suitable for studying novel breast tissue engineering concepts. To date, only a small number of large animal studies have been conducted and characterization of these large animal models is poorly described in the literature. Addressing this gap in the literature, this publication comprehensively describes our original porcine model based on the current published literature and the experience gained from previous animal studies conducted by our research group. In a long-term experiment using our model, we investigated our SGBTE approach by implanting 60 additively manufactured bioresorbable scaffolds under the panniculus carnosus muscle along the flanks of 12 pigs over 12 months. Our model has the flexibility to compare multiple treatment modalities where we successfully investigated scaffolds filled with various treatments of immediate and delayed fat graft and augmentation with platelet rich plasma. No wound complications were observed using our animal model. We were able to grow clinically relevant volumes of soft tissue, which validates our model. Our preclinical large animal model is ideally suited to assess different scaffold or hydrogel-driven soft tissue regeneration strategies. Impact statement The ability to regenerate soft tissue through scaffold-guided tissue engineering concepts can transform breast reconstructive surgery. We describe an original preclinical large animal model to study controlled and reproducible scaffold-guided breast tissue engineering (SGBTE) concepts. This model features the flexibility to investigate multiple treatment conditions per animal, making it an efficient model. We have validated our model with a long-term experiment over 12 months, which exceeds other shorter published studies. Our SGBTE concept provides a more clinically relevant approach in terms of breast reconstruction. Future studies using this model will support the translation of SGBTE into clinical practice.
Collapse
Affiliation(s)
- Matthew Cheng
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - Jan Janzekovic
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Mina Mohseni
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Flavia Medeiros Savi
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jacqui McGovern
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Graham Galloway
- Imaging Technology, Translational Research Institute, Brisbane, Australia
| | - Clement Wong
- Breast and Endocrine Surgery, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Siamak Saifzadeh
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Michael Wagels
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Brisbane, Australia.,Herston Biofabrication Institute, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Dietmar W Hutmacher
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,ARC ITTC in Additive Biomanufacturing, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
7
|
Understanding of how the properties of medical grade lactide based copolymer scaffolds influence adipose tissue regeneration: Sterilization and a systematic in vitro assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112020. [PMID: 33947531 DOI: 10.1016/j.msec.2021.112020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/22/2023]
Abstract
Aliphatic polyesters are the synthetic polymers most commonly used in the development of resorbable medical implants/devices. Various three-dimensional (3D) scaffolds have been fabricated from these polymers and used in adipose tissue engineering. However, their systematic evaluation altogether lacks, which makes it difficult to select a suitable degradable polymer to design 3D resorbable implants and/or devices able to effectively mimic the properties of adipose tissue. Additionally, the impact of sterilization methods on the medical devices, if any, must be taken into account. We evaluate and compare five different medical-grade resorbable polyesters with l-lactide content ranging from 50 to 100 mol% and exhibiting different physiochemical properties depending on the comonomer (d-lactide, ε-caprolactone, glycolide, and trimethylene carbonate). The salt-leaching technique was used to prepare 3D microporous scaffolds. A comprehensive assessment of physical, chemical, and mechanical properties of the scaffolds was carried out in PBS at 37 °C. The cell-material interactions and the ability of the scaffolds to promote adipogenesis of human adipose tissue-derived stem cells were assessed in vitro. The diverse physical and mechanical properties of the scaffolds, due to the different composition of the copolymers, influenced human adipose tissue-derived stem cells proliferation and differentiation. Scaffolds made from polymers which were above their glass transition temperature and with low degree of crystallinity showed better proliferation and adipogenic differentiation of stem cells. The effect of sterilization techniques (electron beam and ethylene oxide) on the polymer properties was also evaluated. Results showed that scaffolds sterilized with the ethylene oxide method better retained their physical and chemical properties. Overall, the presented research provides (i) a detailed understanding to select a degradable polymer that has relevant properties to augment adipose tissue regeneration and can be further used to fabricate medical devices/implants; (ii) directions to prefer a sterilization method that does not change polymer properties.
Collapse
|
8
|
Abdul-Al M, Zaernia A, Sefat F. Biomaterials for breast reconstruction: Promises, advances, and challenges. J Tissue Eng Regen Med 2020; 14:1549-1569. [PMID: 32841503 DOI: 10.1002/term.3121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Breast reconstruction is the opportunity that provides the chance of having breast after undergoing surgical removal of the breast tissue due to cancer-related surgery. However, this varies on the stage of the cancer diagnosis and the procedure undertaken. There are many regenerative medicine methods that provide several initiatives and direct solutions to problems such as the development of "bioactive tissue," which can regenerate adipose tissues with similar normal functions and structures. There have been several studies which have previously explored for the improvement of breast reconstruction including different variations of biomaterials, different fabrication and processing techniques, cells as well as growth factors which enable bioengineers and tissue engineers to reconstruct a suitable breast for patients with breast cancer. Many factors such as shape, proper volume, mechanical properties have been studies but very scattered with not adequate solution for existing patients worldwide. This review article aims to cover recent advances in the biomaterials, which can be used for reconstruction of breasts as well as looking at the various factors that might lead to individuals needing reconstruction and the materials that are available. The focus would be to look at the various biomaterials that are available to use for reconstruction, their properties, and their structural integrity.
Collapse
Affiliation(s)
- Mohamed Abdul-Al
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Amir Zaernia
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| |
Collapse
|
9
|
DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020; 21:ijms21176030. [PMID: 32825788 PMCID: PMC7503256 DOI: 10.3390/ijms21176030] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increases in adipocyte volume and tissue mass due to obesity can result in inflammation, further dysregulation in adipose tissue function, and eventually adipose tissue fibrosis. Like other fibrotic diseases, adipose tissue fibrosis is the accumulation and increased production of extracellular matrix (ECM) proteins. Adipose tissue fibrosis has been linked to decreased insulin sensitivity, poor bariatric surgery outcomes, and difficulty in weight loss. With the rising rates of obesity, it is important to create accurate models for adipose tissue fibrosis to gain mechanistic insights and develop targeted treatments. This article discusses recent research in modeling adipose tissue fibrosis using in vivo and in vitro (2D and 3D) methods with considerations for biomaterial selections. Additionally, this article outlines the importance of adipose tissue in treating other fibrotic diseases and methods used to detect and characterize adipose tissue fibrosis.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
10
|
Nie J, Yi Y, Zhu Y. [Construction of tissue engineered adipose by human adipose tissue derived extracellular vesicle combined with decellularized adipose tissues scaffold]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:226-233. [PMID: 32030956 DOI: 10.7507/1002-1892.201903064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective To explore the possibility of constructing tissue engineered adipose by adipose tissue derived extracellular vesicles (hAT-EV) combined with decellularized adipose tissue (DAT) scaffolds, and to provide a new therapy for soft tissue defects. Methods The adipose tissue voluntarily donated by the liposuction patient was divided into two parts, one of them was decellularized and observed by HE and Masson staining and scanning electron microscope (SEM). Immunohistochemical staining and Western blot detection for collagen type Ⅰ and Ⅳ and laminin were also employed. Another one was incubated with exosome-removed complete medium for 48 hours, then centrifuged to collect the medium and to obtain hAT-EV via ultracentrifugation. The morphology of hAT-EV was observed by transmission electron microscopy; the nanoparticle tracking analyzer (NanoSight) was used to analyze the size distribution; Western blot was used to analyse membrane surface protein of hAT-EV. Adipose derived stem cells (ADSCs) were co-cultured with PKH26 fluorescently labeled hAT-EV, confocal fluorescence microscopy was used to observe the uptake of hAT-EV by ADSCs. Oil red O staining was used to evaluate adipogenic differentiation after hAT-EV and ADSCs co-cultured for 15 days. The DAT was scissored and then injected into the bilateral backs of 8 C57 mice (6-week-old). In experimental group, 0.2 mL hAT-EV was injected weekly, and 0.2 mL PBS was injected weekly in control group. After 12 weeks, the mice were sacrificed, and the new fat organisms on both sides were weighed. The amount of new fat was evaluated by HE and peri-lipoprotein immunofluorescence staining to evaluate the ability of hAT-EV to induce adipogenesis in vivo. Results After acellularization of adipose tissue, HE and Masson staining showed that DAT was mainly composed of loosely arranged collagen with no nucleus; SEM showed that no cells and cell fragments were found in DAT, and thick fibrous collagen bundles could be seen; immunohistochemical staining and Western blot detection showed that collagen type Ⅰ and Ⅳ and laminin were retained in DAT. It was found that hAT-EV exhibited a spherical shape of double-layer envelope, with high expressions of CD63, apoptosis-inducible factor 6 interacting protein antibody, tumor susceptibility gene 101, and the particle size of 97.9% hAT-EV ranged from 32.67 nmto 220.20 nm with a peak at 91.28 nm. Confocal fluorescence microscopy and oil red O staining showed that hAT-EV was absorbed by ADSCs and induced adipogenic differentiation. In vivo experiments showed that the wet weight of fat new organisms in the experimental group was significantly higher than that in the control group ( t=2.278, P=0.048). HE staining showed that the structure of lipid droplets in the experimental group was more than that in the control group, and the collagen content in the control group was higher than that in the experimental group. The proportion of new fat in the experimental group was significantly higher than that in the control group ( t=4.648, P=0.017). Conclusion DAT carrying hAT-EV can be used as a new method to induce adipose tissue regeneration and has a potential application prospect in the repair of soft tissue defects.
Collapse
Affiliation(s)
- Jiaying Nie
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Yangyan Yi
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| | - Yuanzheng Zhu
- Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China
| |
Collapse
|
11
|
Jain S, Yassin MA, Fuoco T, Liu H, Mohamed-Ahmed S, Mustafa K, Finne-Wistrand A. Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification. J Tissue Eng 2020; 11:2041731420954316. [PMID: 32983402 PMCID: PMC7498972 DOI: 10.1177/2041731420954316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023] Open
Abstract
We present a solution to regenerate adipose tissue using degradable, soft, pliable 3D-printed scaffolds made of a medical-grade copolymer coated with polydopamine. The problem today is that while printing, the medical grade copolyesters degrade and the scaffolds become very stiff and brittle, being not optimal for adipose tissue defects. Herein, we have used high molar mass poly(L-lactide-co-trimethylene carbonate) (PLATMC) to engineer scaffolds using a direct extrusion-based 3D printer, the 3D Bioplotter®. Our approach was first focused on how the printing influences the polymer and scaffold's mechanical properties, then on exploring different printing designs and, in the end, on assessing surface functionalization. Finite element analysis revealed that scaffold's mechanical properties vary according to the gradual degradation of the polymer as a consequence of the molar mass decrease during printing. Considering this, we defined optimal printing parameters to minimize material's degradation and printed scaffolds with different designs. We subsequently functionalized one scaffold design with polydopamine coating and conducted in vitro cell studies. Results showed that polydopamine augmented stem cell proliferation and adipogenic differentiation owing to increased surface hydrophilicity. Thus, the present research show that the medical grade PLATMC based scaffolds are a potential candidate towards the development of implantable, resorbable, medical devices for adipose tissue regeneration.
Collapse
Affiliation(s)
- Shubham Jain
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mohammed Ahmad Yassin
- Tissue Engineering Group, Department of
Clinical Dentistry, Faculty of Medicine, University of Bergen, Hordaland,
Norway
| | - Tiziana Fuoco
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hailong Liu
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Solid Mechanics, KTH Royal
Institute of Technology, Stockholm, Sweden
| | - Samih Mohamed-Ahmed
- Tissue Engineering Group, Department of
Clinical Dentistry, Faculty of Medicine, University of Bergen, Hordaland,
Norway
| | - Kamal Mustafa
- Tissue Engineering Group, Department of
Clinical Dentistry, Faculty of Medicine, University of Bergen, Hordaland,
Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
12
|
Wang W, Huang D, Ren J, Li R, Feng Z, Guan C, Bao B, Cai B, Ling J, Zhou C. Optogenetic control of mesenchymal cell fate towards precise bone regeneration. Am J Cancer Res 2019; 9:8196-8205. [PMID: 31754390 PMCID: PMC6857041 DOI: 10.7150/thno.36455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Spatial-temporal control of cell fate in vivo is of great importance for regenerative medicine. Currently, there remain no practical strategies to tune cell-fate spatial-temporally. Optogenetics is a biological technique that widely used to control cell activity in genetically defined neurons in a spatiotemporal-specific manner by light. In this study, optogenetics was repurposed for precise bone tissue regeneration. Methods: Lhx8 and BMP2 genes, which are considered as the master genes for mesenchymal stem cell proliferation and differentiation respectively, were recombined into a customized optogenetic control system. In the system, Lhx8 was constitutively expressed, while BMP2 together with shLhx8 expression was driven by blue light. Results: As expected, blue light induced BMP2 expression and inactivated Lhx8 expression in cells infected with the optogenetic control system. Optogenetic control of BMP2 and Lhx8 expression inversely regulates MSC fate in vitro. By animal study, we found that blue light could fine-tune the regeneration in vivo. Blue light illumination significantly promotes bone regeneration when the scaffold was loaded with MSCs infected with adeno-Lhx8, GI-Gal4DBD, LOV-VP16, and BMP2-shLhx8. Conclusions: Together, our study revealed that optogenetic control of the master genes for mesenchymal stem cell proliferation and differentiation would be such a candidate strategy for precise regenerative medicine.
Collapse
|
13
|
Recent Advances and Future Directions in Postmastectomy Breast Reconstruction. Clin Breast Cancer 2018; 18:e571-e585. [DOI: 10.1016/j.clbc.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022]
|
14
|
Mahoney CM, Imbarlina C, Yates CC, Marra KG. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations. Front Pharmacol 2018; 9:507. [PMID: 29867506 PMCID: PMC5966552 DOI: 10.3389/fphar.2018.00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/27/2018] [Indexed: 01/01/2023] Open
Abstract
Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.
Collapse
Affiliation(s)
- Christopher M Mahoney
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cayla Imbarlina
- Department of Biology, Carlow University, Pittsburgh, PA, United States
| | - Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
An Y, Nie FF, Qin ZL, Xue HY, Chen LJ, Li B, Li D. In vitro Flow Perfusion Maintaining Long-term Viability of the Rat Groin Fat Flap: A Novel Model for Research on Large-scale Engineered Tissues. Chin Med J (Engl) 2018; 131:213-217. [PMID: 29336371 PMCID: PMC5776853 DOI: 10.4103/0366-6999.222334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Large-scale muscle tissue engineering remains a major challenge. An axial vascular pedicle and perfusion bioreactor are necessary for the development and maintenance of large-scale engineered muscle to ensure circulation within the construct. We aimed to develop a novel experimental model of a large-scale engineered muscle flap from an existing rat groin fat flap. METHODS A fat flap based on the superficial inferior epigastric vascular pedicle was excised from rats and placed into a perfusion bioreactor. The flaps were kept in the bioreactor for up to 7 weeks, and transdifferentiation of adipose to muscle tissue could have taken place. This system enabled myogenic-differentiation medium flow through the bioreactor at constant pH and oxygen concentration. Assessment of viability was performed by an immunofluorescence assay, histological staining, a calcein-based live/dead test, and through determination of RNA quantity and quality after 1, 3, 5, and 7 weeks. RESULTS Immunofluorescence staining showed that smooth muscle around vessels was still intact without signs of necrosis or atrophy. The visual assessment of viability by the calcein-based live/dead test revealed viability of the rat adipose tissue preserved in the bioreactor system with permanent perfusion. RNA samples from different experimental conditions were quantified by spectrophotometry, and intact bands of 18S and 28S rRNA were detected by gel electrophoresis, indicating that degradation of RNA was minimal. CONCLUSIONS Flow perfusion maintains the long-term viability of a rat groin engineered muscle flap in vitro, and a large-scale vascularized muscle could be engineered in a perfusion bioreactor.
Collapse
Affiliation(s)
- Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Fang-Fei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Ze-Lian Qin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Hong-Yu Xue
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Lu-Jia Chen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Bi Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Dong Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
16
|
Egro F, Marra KG. Soft Tissue Reconstruction. Methods Mol Biol 2018; 1773:203-213. [PMID: 29687392 DOI: 10.1007/978-1-4939-7799-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Autologous fat transplantation has revolutionized soft tissue reconstruction, but conventional methods remain unpredictable as graft resorption rates are high due to lack of vascularization. The advent of adipose-derived stem cells (ASCs) has led to improvement of fat grafting outcomes, in part to their ability to undergo facile differentiation into adipose tissue, their angiogenic properties, and their ability to express and secrete multiple growth factors. This chapter discusses the isolation and characterization of human ASCs, its expansion in vitro, and relevant in vivo models for adipose tissue engineering.
Collapse
|
17
|
Song M, Liu Y, Hui L. Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep 2017; 17:138-146. [PMID: 29115567 PMCID: PMC5780077 DOI: 10.3892/mmr.2017.7857] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Decellularized adipose extracellular matrix (ECM) has been used in the clinic to support the regeneration of adipose tissues. The methods used to produce adipose tissue ECM scaffolds exhibit distinct effects upon the structural and functional components of the resultant scaffold material. The current study presents an acellular ECM scaffold from human adipose tissues derived using successive physical and chemical treatments, including repeated freeze-thaw cycles followed by centrifugation, polar solvent extraction and enzymatic digestion. Cellular components, including nucleic acids were effectively removed without significant disruption of the morphology or structure of the ECM. The compositions of major ECM components were evaluated, including acid/pepsin soluble collagen, sulfated glycosaminoglycan and laminin. The decellularized ECM exhibited satisfactory mechanical properties. Cell seeding experiments involving human adipose-derived stem cells indicated that the decellularized ECM provided an inductive microenvironment for adipogenesis without the need for exogenous differentiation factors. Higher levels of glycerol-3-phosphate dehydrogenase activity were observed among induced cells in the ECM scaffolds when compared with induced cells in collagen type I scaffolds. In conclusion, the results suggested that the decellularized ECM, containing biological and chemical cues of native human ECM, may be an ideal scaffold material for autologous and allograft tissue engineering.
Collapse
Affiliation(s)
- Mei Song
- Burns and Plastic Surgery Center, General Hospital of Lanzhou Military Command of The People's Liberation Army, Institute of Orthopedics of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Yi Liu
- Burns and Plastic Surgery Center, General Hospital of Lanzhou Military Command of The People's Liberation Army, Institute of Orthopedics of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Ling Hui
- Department of Clinical Laboratories, General Hospital of Lanzhou Military Command of The People's Liberation Army, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
18
|
O’Halloran N, Courtney D, Kerin MJ, Lowery AJ. Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety. Breast Cancer (Auckl) 2017; 11:1178223417726777. [PMID: 29104428 PMCID: PMC5562338 DOI: 10.1177/1178223417726777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.
Collapse
Affiliation(s)
- Niamh O’Halloran
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Donald Courtney
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Aoife J Lowery
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
19
|
Berndt S, Konz I, Colin D, Germain S, Pittet-Cuénod B, Klok HA, Modarressi A. * Microcomputed Tomography Technique for In Vivo Three-Dimensional Fat Tissue Volume Evaluation After Polymer Injection. Tissue Eng Part C Methods 2017; 23:964-970. [PMID: 28806898 PMCID: PMC5734152 DOI: 10.1089/ten.tec.2017.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Tissue engineering technologies are new and promising techniques in fat tissue reconstruction. However, to assess their efficacy before any clinical application, in vivo experiments are mandatory. This study assesses whether microcomputed tomography (CT) scan imaging is suitable to analyze in vivo the behavior of injected engineered polymer and changes in fat tissue. The volume of mice inguinal fat pads and the resorption rate of different polymers were analyzed by CT scan for up to 3 months. Different biomaterials were used, including our innovative microspheres loaded with oleic acid. We were able to follow in vivo the polymer and the fat volume of the same animals during a long-term follow-up of 90 days. Semiautomatic three-dimensional quantification allowed to determine the fat volume enhancement after injection, as well as the resorption rate of our product compared to other biomaterials (i.e., polylactic and hyaluronic acid) until 90 days. Our results demonstrate the encouraging proof-of-principle evidence for the application of micro-CT scan technology to follow in vivo biodegradable polymers in a fat tissue engineering approach. This noninvasive technique offers the advantages of the long-term follow-up of fat tissue and synthetic materials in the same animals, which allows both a scientific evaluation of the measurements and the reduction of the number of animals used in in vivo protocols in accordance with the 3 "R" principles governing the use of animals in science.
Collapse
Affiliation(s)
- Sarah Berndt
- 1 Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals and Medical School, University of Geneva , Geneva, Switzerland
| | - Ioana Konz
- 2 Laboratoire des Polymères STI-IMX-LP, Ecole Polytechnique Fédérale de Lausanne, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques , Lausanne, Switzerland
| | - Didier Colin
- 3 Centre for BioMedical Imaging, Geneva University Hospitals , Geneva, Switzerland
| | - Stéphane Germain
- 3 Centre for BioMedical Imaging, Geneva University Hospitals , Geneva, Switzerland
| | - Brigitte Pittet-Cuénod
- 1 Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals and Medical School, University of Geneva , Geneva, Switzerland
| | - Harm-Anton Klok
- 2 Laboratoire des Polymères STI-IMX-LP, Ecole Polytechnique Fédérale de Lausanne, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques , Lausanne, Switzerland
| | - Ali Modarressi
- 1 Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals and Medical School, University of Geneva , Geneva, Switzerland
| |
Collapse
|
20
|
|
21
|
Injected Implant of Uncultured Stromal Vascular Fraction Loaded Onto a Collagen Gel: In Vivo Study of Adipogenesis and Long-term Outcomes. Ann Plast Surg 2016; 76 Suppl 1:S108-16. [PMID: 26808740 DOI: 10.1097/sap.0000000000000687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stromal vascular fraction (SVF) cells were used to increase the efficacy of a newly formed adipose tissue in a collagen gel in vitro. However, the outcome of the seeded cells in the collagen gel in vivo remains unknown. We traced the SVF cells in the host tissue and evaluated the efficacy of SVF for fat tissue engineering. METHODS The aggregates implanted in the experimental and control groups were prepared by mixing SVF with the collagen gel and Dulbecco's modified Eagle medium with the collagen gel, respectively. The aggregates were implanted using a subcutaneous injection into the backs of immunodeficient mice. The aggregates were harvested 1, 2, 4, and 6 months after implantation; and 9 mice were euthanized each time. Macroscopic changes in the volume and wet weight of the aggregates were assessed. The formation of adipose tissue was studied using hematoxylin and eosin and Nile red staining. The origin and survival of adipocytes in the aggregates were examined through the immunostaining of leptin antibodies, DNA assay, and tracing of SVF cells by 1,1'-dioctadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate labeling. RESULTS The formation of adipose tissue was observed in all of the aggregates. Implanted human SVF cells remained in the experimental aggregates harvested after 1, 2, and 4 months but not after 6 months. At 6 months, viable adipocytes in both groups were of murine origin. Furthermore, at 6 months, the mean volume of the aggregate (P < 0.001) and the mean percentage of adipocytes (P < 0.001) were significantly higher in the experimental group than in the control group. CONCLUSIONS Implanted SVF cells could not be traced in the aggregates harvested at 6 months but promoted the recruitment of host adipocytes to generate more adipose tissue in the experimental group than in the control group.
Collapse
|
22
|
Zhang S, Lu Q, Cao T, Toh WS. Adipose Tissue and Extracellular Matrix Development by Injectable Decellularized Adipose Matrix Loaded with Basic Fibroblast Growth Factor. Plast Reconstr Surg 2016; 137:1171-1180. [PMID: 27018672 DOI: 10.1097/prs.0000000000002019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is a significant need for soft-tissue replacements in the field of reconstructive surgery. Decellularized adipose tissues were heparin crosslinked and loaded with basic fibroblast growth factor (bFGF). This injectable system was evaluated for its adipogenic and angiogenic capabilities for in vivo adipose tissue regeneration. METHODS Decellularized adipose tissues were harvested from the inguinal fat pads of C57BL/6J mice, minced, and heparinized before being loaded with bFGF. Decellularized adipose tissues without bFGF served as a control. In vivo adipose neotissue formation, neovascularization, and volume stability were evaluated over a period of 12 weeks. After 6 or 12 weeks, mice were killed and the newly formed adipose tissues, together with the contralateral endogenous adipose tissues, were harvested for gross, volumetric, histologic, and immunohistochemical analysis. RESULTS Decellularized adipose tissues that were heparinized and loaded with bFGF induced significant de novo adipose neotissue formation, with progressive tissue growth and neovascularization from 6 to 12 weeks. The adipose neotissues exhibited mature adipose morphology and extracellular matrix that closely resembled that of the endogenous adipose tissue. In contrast, decellularized adipose tissues without bFGF induced limited adipose neotissue formation and were completely resorbed by the end of 12 weeks. CONCLUSION This study demonstrates the high efficiency of heparinized decellularized adipose tissue matrix loaded with bFGF in promoting adipose neotissue formation and neovascularization with long-term volume stability.
Collapse
Affiliation(s)
- Shipin Zhang
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Qiqi Lu
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Tong Cao
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| | - Wei Seong Toh
- Singapore.,From the Faculty of Dentistry and the Tissue Engineering Program, Life Sciences Institute, National University of Singapore
| |
Collapse
|
23
|
Clevenger TN, Luna G, Fisher SK, Clegg DO. Strategies for bioengineered scaffolds that support adipose stem cells in regenerative therapies. Regen Med 2016; 11:589-99. [PMID: 27484203 DOI: 10.2217/rme-2016-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regenerative medicine possesses the potential to ameliorate damage to tissue that results from a vast range of conditions, including traumatic injury, tumor resection and inherited tissue defects. Adult stem cells, while more limited in their potential than pluripotent stem cells, are still capable of differentiating into numerous lineages and provide feasible allogeneic and autologous treatment options for many conditions. Adipose stem cells are one of the most abundant types of stem cell in the adult human. Here, we review recent advances in the development of synthetic scaffolding systems used in concert with adipose stem cells and assess their potential use for clinical applications.
Collapse
Affiliation(s)
- Tracy N Clevenger
- Center for Stem Cell Biology & Engineering, University of California, Santa Barbara, CA, USA.,Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA.,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Center for Bio-Image Informatics, University of California, Santa Barbara, CA, USA
| | - Steven K Fisher
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Center for Bio-Image Informatics, University of California, Santa Barbara, CA, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology & Engineering, University of California, Santa Barbara, CA, USA.,Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA.,Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| |
Collapse
|
24
|
Poh PSP, Hege C, Chhaya MP, Balmayor ER, Foehr P, Burgkart RH, Schantz JT, Schiller SM, Schilling AF, Hutmacher DW. Evaluation of polycaprolactone − poly-D,L-lactide copolymer as biomaterial for breast tissue engineering. POLYM INT 2016. [DOI: 10.1002/pi.5181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patrina SP Poh
- Department of Experimental Trauma Surgery; Klinikum rechts der Isar, Technische Universität München (TUM); Munich Germany
- Clinic of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar; Technische Universität München (TUM); Munich Germany
| | - Cordula Hege
- Center for Biosystem Analysis (ZBSA); University of Freiburg; Freiburg Germany
- Fraunhofer IOSB; Ettlingen Germany
| | - Mohit P Chhaya
- Institute of Health and Biomedical Innovation (IHBI); Queensland University of Technology (QUT); Brisbane Australia
| | - Elizabeth R Balmayor
- Clinic of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar; Technische Universität München (TUM); Munich Germany
- Institute for Advanced Study (IAS); Technische Universität München (TUM); Garching Germany
| | - Peter Foehr
- Department of Orthopaedics and Sport Orthopaedics, Klinikum rechts der Isar; Technische Universität München (TUM); Munich Germany
| | - Rainer H Burgkart
- Department of Orthopaedics and Sport Orthopaedics, Klinikum rechts der Isar; Technische Universität München (TUM); Munich Germany
| | - Jan-Thorsten Schantz
- Clinic of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar; Technische Universität München (TUM); Munich Germany
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Stefan M Schiller
- Center for Biosystem Analysis (ZBSA); University of Freiburg; Freiburg Germany
| | - Arndt F Schilling
- Clinic of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar; Technische Universität München (TUM); Munich Germany
- Clinic for Trauma Surgery, Orthopaedic Surgery and Plastic Surgery; University Medical Center Göttingen; Göttingen Germany
| | - Dietmar W Hutmacher
- Institute for Advanced Study (IAS); Technische Universität München (TUM); Garching Germany
- Institute of Health and Biomedical Innovation (IHBI); Queensland University of Technology (QUT); Brisbane Australia
| |
Collapse
|
25
|
Transformation of Breast Reconstruction via Additive Biomanufacturing. Sci Rep 2016; 6:28030. [PMID: 27301425 PMCID: PMC4908382 DOI: 10.1038/srep28030] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue engineering offers a promising alternative to current breast reconstruction options. However, the conventional approach of using a scaffold in combination with adipose-derived precursor cells poses several problems in terms of scalability and hence clinical feasibility. Following the body-as-a-bioreactor approach, this study proposes a unique concept of delayed fat injection into an additive biomanufactured and custom-made scaffold. Three study groups were evaluated: Empty scaffold, Scaffold containing 4 cm3 lipoaspirate and Empty scaffold +2-week prevascularisation period. In group 3, of prevascularisation, 4 cm3 of lipoaspirate was injected into scaffolds after 2 weeks. Using a well-characterised additive biomanufacturing technology platform, patient-specific scaffolds made of medical-grade-polycaprolactone were designed and fabricated. Scaffolds were implanted in subglandular pockets in immunocompetent minipigs (n = 4) for 24-weeks. Angiogenesis and adipose tissue regeneration were observed in all constructs. Histological evaluation showed that the prevascularisation + lipoaspirate group had the highest relative area of adipose tissue (47.32% ± 4.12) which was significantly higher than both lipoaspirate-only (39.67% ± 2.04) and empty control group (8.31% ± 8.94) and similar to native breast tissue (44.97% ± 14.12). This large preclinical animal study provides proof-of-principle that the clinically applicable prevascularisation and delayed fat-injection techniques can be used for regeneration of large volumes of adipose tissue.
Collapse
|
26
|
Haddad SM, Omidi E, Flynn LE, Samani A. Comparative biomechanical study of using decellularized human adipose tissues for post-mastectomy and post-lumpectomy breast reconstruction. J Mech Behav Biomed Mater 2016; 57:235-45. [DOI: 10.1016/j.jmbbm.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 01/10/2023]
|
27
|
Najafabadi HS, Soheili ZS, Ganji SM. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film. J Ophthalmic Vis Res 2016; 10:286-94. [PMID: 26730315 PMCID: PMC4687263 DOI: 10.4103/2008-322x.170357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose: A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Methods: Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle’s-medium-and-Ham’s-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. Results: The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Conclusion: Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Basic Sciences, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Basic Sciences, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Basic Sciences, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
28
|
Zhang Q, Hubenak J, Iyyanki T, Alred E, Turza KC, Davis G, Chang EI, Branch-Brooks CD, Beahm EK, Butler CE. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle. Biomaterials 2015; 73:198-213. [PMID: 26410787 DOI: 10.1016/j.biomaterials.2015.09.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022]
Abstract
Insufficient neovascularization is associated with high levels of resorption and necrosis in autologous and engineered fat grafts. We tested the hypothesis that incorporating angiogenic growth factor into a scaffold-stem cell construct and implanting this construct around a vascular pedicle improves neovascularization and adipogenesis for engineering soft tissue flaps. Poly(lactic-co-glycolic-acid/polyethylene glycol (PLGA/PEG) microspheres containing vascular endothelial growth factor (VEGF) were impregnated into collagen-chitosan scaffolds seeded with human adipose-derived stem cells (hASCs). This setup was analyzed in vitro and then implanted into isolated chambers around a discrete vascular pedicle in nude rats. Engineered tissue samples within the chambers were harvested and analyzed for differences in vascularization and adipose tissue growth. In vitro testing showed that the collagen-chitosan scaffold provided a supportive environment for hASC integration and proliferation. PLGA/PEG microspheres with slow-release VEGF had no negative effect on cell survival in collagen-chitosan scaffolds. In vivo, the system resulted in a statistically significant increase in neovascularization that in turn led to a significant increase in adipose tissue persistence after 8 weeks versus control constructs. These data indicate that our model-hASCs integrated with a collagen-chitosan scaffold incorporated with VEGF-containing PLGA/PEG microspheres supported by a predominant vascular vessel inside a chamber-provides a promising, clinically translatable platform for engineering vascularized soft tissue flap. The engineered adipose tissue with a vascular pedicle could conceivably be transferred as a vascularized soft tissue pedicle flap or free flap to a recipient site for the repair of soft-tissue defects.
Collapse
Affiliation(s)
- Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Justin Hubenak
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tejaswi Iyyanki
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik Alred
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kristin C Turza
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Greg Davis
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward I Chang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cynthia D Branch-Brooks
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabeth K Beahm
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles E Butler
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Li H, Zhang FL, Shi WJ, Bai XJ, Jia SQ, Zhang CG, Ding W. Immobilization of FLAG-Tagged Recombinant Adeno-Associated Virus 2 onto Tissue Engineering Scaffolds for the Improvement of Transgene Delivery in Cell Transplants. PLoS One 2015; 10:e0129013. [PMID: 26035716 PMCID: PMC4452710 DOI: 10.1371/journal.pone.0129013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
The technology of virus-based genetic modification in tissue engineering has provided the opportunity to produce more flexible and versatile biomaterials for transplantation. Localizing the transgene expression with increased efficiency is critical for tissue engineering as well as a challenge for virus-based gene delivery. In this study, we tagged the VP2 protein of type 2 adeno-associated virus (AAV) with a 3×FLAG plasmid at the N-terminus and packaged a FLAG-tagged recombinant AAV2 chimeric mutant. The mutant AAVs were immobilized onto the tissue engineering scaffolds with crosslinked anti-FLAG antibodies by N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP). Cultured cells were seeded to scaffolds to form 3D transplants, and then tested for viral transduction both in vitro and in vivo. The results showed that our FLAG-tagged AAV2 exerted similar transduction efficiency compared with the wild type AAV2 when infected cultured cells. Following immobilization onto the scaffolds of PLGA or gelatin sponge with anti-FLAG antibodies, the viral mediated transgene expression was significantly improved and more localized. Our data demonstrated that the mutation of AAV capsid targeted for antibody-based immobilization could be a practical approach for more efficient and precise transgene delivery. It was also suggested that the immobilization of AAV might have attractive potentials in applications of tissue engineering involving the targeted gene manipulation in 3D tissue cultures.
Collapse
Affiliation(s)
- Hua Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Feng-Lan Zhang
- National Institutes for Food and Drug Controls, Beijing, China
| | - Wen-Jie Shi
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Department of Medical Genetics, Capital Medical University, Beijing, China
| | - Xue-Jia Bai
- Department of Medical Genetics, Capital Medical University, Beijing, China
| | - Shu-Qin Jia
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chen-Guang Zhang
- Department of Medical Genetics, Capital Medical University, Beijing, China
- * E-mail: (CGZ); (WD)
| | - Wei Ding
- Department of Medical Genetics, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- * E-mail: (CGZ); (WD)
| |
Collapse
|
30
|
Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials 2015; 52:551-60. [DOI: 10.1016/j.biomaterials.2015.01.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 01/08/2023]
|
31
|
Frydrych M, Román S, MacNeil S, Chen B. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomater 2015; 18:40-9. [PMID: 25769230 DOI: 10.1016/j.actbio.2015.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
Large three-dimensional poly(glycerol sebacate) (PGS)/poly(l-lactic acid) (PLLA) scaffolds with similar bulk mechanical properties to native low and high stress adapted adipose tissue were fabricated via a freeze-drying and a subsequent curing process. PGS/PLLA scaffolds containing 73vol.% PGS were prepared using two different organic solvents, resulting in highly interconnected open-pore structures with porosities and pore sizes in the range of 91-92% and 109-141μm, respectively. Scanning electron microscopic analysis indicated that the scaffolds featured different microstructure characteristics, depending on the organic solvent in use. The PGS/PLLA scaffolds had a tensile Young's modulus of 0.030MPa, tensile strength of 0.007MPa, elongation at the maximum stress of 25% and full shape recovery capability upon release of the compressive load. In vitro degradation tests presented mass losses of 11-16% and 54-55% without and with the presence of lipase enzyme in 31days, respectively. In vitro cell tests exhibited clear evidence that the PGS/PLLA scaffolds prepared with 1,4-dioxane as the solvent are suitable for culture of adipose derived stem cells. Compared to pristine PLLA scaffolds prepared with the same procedure, these scaffolds provided favourable porous microstructures, good hydrophilic characteristics, and appropriate mechanical properties for soft tissue applications, as well as enhanced scaffold cell penetration and tissue in-growth characteristics. This work demonstrates that the PGS/PLLA scaffolds have potential for applications in adipose tissue engineering.
Collapse
Affiliation(s)
- Martin Frydrych
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Sabiniano Román
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ, United Kingdom
| | - Sheila MacNeil
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ, United Kingdom
| | - Biqiong Chen
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
32
|
Self-healing of pores in PLGAs. J Control Release 2015; 206:20-9. [DOI: 10.1016/j.jconrel.2015.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 11/22/2022]
|
33
|
Khan OF, Voice DN, Leung BM, Sefton MV. A novel high-speed production process to create modular components for the bottom-up assembly of large-scale tissue-engineered constructs. Adv Healthc Mater 2015; 4:113-20. [PMID: 24895070 PMCID: PMC4254903 DOI: 10.1002/adhm.201400150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/18/2014] [Indexed: 01/24/2023]
Abstract
To replace damaged or diseased tissues, large tissue-engineered constructs can be prepared by assembling modular components in a bottom-up approach. However, a high-speed method is needed to produce sufficient numbers of these modules for full-sized tissue substitutes. To this end, a novel production technique is devised, combining air shearing and a plug flow reactor-style design to rapidly produce large quantities of hydrogel-based (here type I collagen) cylindrical modular components with tunable diameters and length. Using this technique, modules containing NIH 3T3 cells show greater than 95% viability while endothelial cell surface attachment and confluent monolayer formation are demonstrated. Additionally, the rapidly produced modules are used to assemble large tissue constructs (>1 cm(3) ) in vitro. Module building blocks containing luciferase-expressing L929 cells are packed in full size adult rat-liver-shaped bioreactors and perfused with cell medium, to demonstrate the capacity to build organ-shaped constructs; bioluminescence demonstrates sustained viability over 3 d. Cardiomyocyte-embedded modules are also used to assemble electrically stimulatable contractile tissue.
Collapse
Affiliation(s)
- Omar F. Khan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Derek N. Voice
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Brendan M. Leung
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Michael V. Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
34
|
Bellas E, Rollins A, Moreau JE, Lo T, Quinn KP, Fourligas N, Georgakoudi I, Leisk GG, Mazan M, Thane KE, Taeymans O, Hoffman AM, Kaplan DL, Kirker-Head CA. Equine model for soft-tissue regeneration. J Biomed Mater Res B Appl Biomater 2014; 103:1217-1227. [PMID: 25350377 DOI: 10.1002/jbm.b.33299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022]
Abstract
Soft-tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft-tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft-tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over 6 months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation.
Collapse
Affiliation(s)
- E Bellas
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - A Rollins
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - J E Moreau
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - T Lo
- Department of Mechanical Engineering, Tufts University, Medford, MA
| | - K P Quinn
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - N Fourligas
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - I Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - G G Leisk
- Department of Mechanical Engineering, Tufts University, Medford, MA
| | - M Mazan
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - K E Thane
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - O Taeymans
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - A M Hoffman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - C A Kirker-Head
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| |
Collapse
|
35
|
Omidi E, Fuetterer L, Reza Mousavi S, Armstrong RC, Flynn LE, Samani A. Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues. J Biomech 2014; 47:3657-63. [PMID: 25446266 DOI: 10.1016/j.jbiomech.2014.09.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 12/29/2022]
Abstract
Decellularized adipose tissue (DAT) has shown potential as a regenerative scaffold for plastic and reconstructive surgery to augment or replace damaged or missing adipose tissue (e.g. following lumpectomy or mastectomy). The mechanical properties of soft tissue substitutes are of paramount importance in restoring the natural shape and appearance of the affected tissues, and mechanical mismatching can lead to unpredictable scar tissue formation and poor implant integration. The goal of this work was to assess the linear elastic and hyperelastic properties of decellularized human adipose tissue and compare them to those of normal breast adipose tissue. To assess the influence of the adipose depot source on the mechanical properties of the resultant decellularized scaffolds, we performed indentation tests on DAT samples sourced from adipose tissue isolated from the breast, subcutaneous abdominal region, omentum, pericardial depot and thymic remnant, and their corresponding force-displacement data were acquired. Elastic and hyperelastic parameters were estimated using inverse finite element algorithms. Subsequently, a simulation was conducted in which the estimated hyperelastic parameters were tested in a real human breast model under gravity loading in order to assess the suitability of the scaffolds for implantation. Results of these tests showed that in the human breast, the DAT would show similar deformability to that of native normal tissue. Using the measured hyperelastic parameters, we were able to assess whether DAT derived from different depots exhibited different intrinsic nonlinearities. Results showed that DAT sourced from varying regions of the body exhibited little intrinsic nonlinearity, with no statistically significant differences between the groups.
Collapse
Affiliation(s)
- Ehsan Omidi
- Biomedical Engineering Program, University of Western Ontario, London, ON, Canada
| | - Lydia Fuetterer
- Department of Chemical Engineering, Queen׳s University, Kingston, ON, Canada
| | - Seyed Reza Mousavi
- Department of Electrical and Computer Engineering, University of Western Ontario, London, ON, Canada
| | - Ryan C Armstrong
- Biomedical Engineering Program, University of Western Ontario, London, ON, Canada
| | - Lauren E Flynn
- Biomedical Engineering Program, University of Western Ontario, London, ON, Canada; Department of Chemical Engineering, Queen׳s University, Kingston, ON, Canada; Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Abbas Samani
- Biomedical Engineering Program, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Department of Electrical and Computer Engineering, University of Western Ontario, London, ON, Canada; Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada.
| |
Collapse
|
36
|
Li C, Wang H, Liu H, Yin J, Cui L, Chen Z. The prevention effect of poly (L-glutamic acid)/chitosan on spinal epidural fibrosis and peridural adhesion in the post-laminectomy rabbit model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:2423-31. [PMID: 25001891 DOI: 10.1007/s00586-014-3438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/21/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Spinal epidural fibrosis and adhesion are implicated as one of the key factors of failed back surgery syndrome, which may cause dura mater compression or peridural tethering, resulting in persistent backache and leg pain. Various materials or drugs have been used to inhibit formation of epidural fibrosis and reduce the compressive effect on neural structures. Nevertheless, the effects are not satisfied. In this study, we investigated the prevention effect of poly (L-glutamic acid)/chitosan (PLGA/CS) barrier on epidural fibrosis developing post-laminectomy in a rabbit model. METHODS Sixteen rabbits were divided randomly into two equal groups: group A (experimental group, n = 8) and group B (non-treatment group, n = 8). In both groups, total L5-6 laminectomy was performed; further both ligamentum flavum and epidural fat were removed gently. In experimental group, the laminectomy sites were treated with PLGA/CS barriers, while no additional treatment was received in non-treatment group. At 1, 12 and 24 weeks post-surgery, the animals were subjected to magnetic resonance imaging (MRI) evaluation. Following last MRI examination, all rabbits were sacrificed and their spinal columns were totally removed for further macroscopic and histological evaluation. RESULTS MRI showed that rabbits treated with PLGA/CS barrier at 12 and 24 weeks post-surgery had less epidural fibrosis or scar tissue, peridural adhesion, foreign body reaction and low pressure of spinal cord in comparison with the non-treatment group. In consistence with the radiographic results, macroscopic analysis and histological examination showed that the amount of scar tissue and the extent of epidural adhesion decreased significantly in experimental groups. Concerning the fibroblast density evaluated, the scores were significantly lower in experimental group compared with those in non-treatment group. CONCLUSION The results of our study demonstrate that PLGA/CS barrier is effective in inhibiting epidural fibrosis and peridural adhesions in post-laminectomy rabbit model.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Feng Lin Road No. 180, XuHui District, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
The adipogenic potential of various extracellular matrices under the influence of an angiogenic growth factor combination in a mouse tissue engineering chamber. Acta Biomater 2014; 10:1907-18. [PMID: 24296126 DOI: 10.1016/j.actbio.2013.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/01/2013] [Accepted: 11/22/2013] [Indexed: 11/21/2022]
Abstract
The extracellular matrix (ECM) Matrigel™ has frequently and successfully been used to generate new adipose tissue experimentally, but is unsuitable for human application. This study sought to compare the adipogenic potential of a number of alternative, biologically derived or synthetic ECMs with potential for human application, with and without growth factors and a small fat autograft. Eight groups, with six severe combined immunodeficient (SCID) mice per group, were created with bilateral chambers (silicone tubes) implanted around the epigastric vascular pedicle, with one chamber/animal containing a 5mg fat autograft. Two animal groups were created for each of four ECMs (Matrigel™, Myogel, Cymetra® and PuraMatrix™) which filled the bilateral chambers. One group/ECM had no growth factors added to chambers whilst the other group had growth factors (GFs) (vascular endothelial growth factor-A (VEGF-A) plus fibroblast growth factor-2 (FGF-2) plus platelet-derived growth factor-BB (PDGF-BB)) added to both chambers. At 6weeks, chamber tissue was morphometrically assessed for percent and absolute adipose tissue volume. Overall, the triple GF regime significantly increased percent(∗) and absolute(#) adipose tissue volume (p<0.0005(∗#)) compared to chambers without triple GF treatment. The fat autograft also significantly increased percent (p<0.0005) and absolute (p<0.011) adipose tissue volume. Cymetra® (human collagen) constructs yielded the largest total tissue and absolute adipose tissue volume. We found that the pro-angiogenic FGF-2, VEGF-A and PDGF-BB combination in ECMs of synthetic and biological origin produced an overall significantly increased adipose tissue volume at 6weeks and may have clinical application, particularly with Cymetra.
Collapse
|
38
|
|
39
|
Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 2014; 4:2353. [PMID: 23955534 DOI: 10.1038/ncomms3353] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
The in vivo efficacy of engineered tissue constructs depends largely on their integration with the host vasculature. Prevascularisation has been noted to facilitate integration of the constructs via anastomosis of preformed microvascular networks. Here we report a technique to fabricate aligned, spatially defined prevascularised tissue constructs with endothelial vessels by assembling individually tailored cell-laden polyelectrolyte hydrogel fibres. Stable, aligned endothelial vessels form in vitro within these constructs in 24 h, and these vessels anastomose with the host circulation in a mouse subcutaneous model. We create vascularised adipose and hepatic tissues by co-patterning the respective cell types with the preformed endothelial vessels. Our study indicates that the formation of aligned endothelial vessels in a hydrogel is an efficient prevascularisation approach in the engineering of tissue constructs.
Collapse
|
40
|
Peng Z, Dong Z, Chang Q, Zhan W, Zeng Z, Zhang S, Lu F. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation. Tissue Eng Part C Methods 2014; 20:875-85. [PMID: 24559078 DOI: 10.1089/ten.tec.2013.0431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.
Collapse
Affiliation(s)
- Zhangsong Peng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University , Guang Zhou, P.R. China
| | | | | | | | | | | | | |
Collapse
|
41
|
Tanzi MC, Farè S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices 2014; 6:533-51. [DOI: 10.1586/erd.09.37] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Abstract
There is high clinical need for an adequate reconstruction of soft tissue defects as found after tumor resections, deep burns or severe trauma. A promising solution for these defects is adipose tissue engineering, with adult stem cells of the adipose tissue, implanted on 3D biomaterials. These adipogenic precursor cells survive ischemia better than mature adipocytes and have the potency to proliferate and differentiate into fat cells after transplantation. They can be yielded from excised adipose tissue or liposuction material. When preadipocytes are seeded on carriers for the generation of adipose tissue, chemical composition, mechanical stability and 3D architecture of the construct are crucial factors. They ensure cellular penetration into the construct, sufficient proliferation on the material and full differentiation inside the construct after transplantation. In hydrogels, it is especially the use and combination of growth factors that determine the overall outcome of the applied biopolymer. Over recent years, in vivo trials in particular have allowed significant insights into the potential, the perspectives, but also the current difficulties and draw-backs in adipose tissue engineering. This review focuses on the main strategies in adipose tissue regeneration, compares the various materials that have been used as carrier matrices so far and considers them in light of the challenges they have yet to meet.
Collapse
Affiliation(s)
- Karsten Hemmrich
- University Hospital of the Aachen, University of Technology RWTH, Department of Plastic Surgery and Hand Surgery - Burn Centre, Pauwelsstr. 30, D-52057 Aachen, Germany.
| | | |
Collapse
|
43
|
Klein SM, Vykoukal J, Prantl L, Dolderer JH. Tissue Engineering of Vascularized Adipose Tissue for Soft Tissue Reconstruction. STEM CELLS IN AESTHETIC PROCEDURES 2014:23-40. [DOI: 10.1007/978-3-642-45207-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Wu I, Elisseeff J. Biomaterials and Tissue Engineering for Soft Tissue Reconstruction. NATURAL AND SYNTHETIC BIOMEDICAL POLYMERS 2014:235-241. [DOI: 10.1016/b978-0-12-396983-5.00015-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Volume-stable adipose tissue formation by implantation of human adipose-derived stromal cells using solid free-form fabrication-based polymer scaffolds. Ann Plast Surg 2013; 70:98-102. [PMID: 22274147 DOI: 10.1097/sap.0b013e31822f9a81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regeneration of volume-stable adipose tissue is required for treatment of soft-tissue loss due to cancer, trauma, burns and for correctional cosmetic surgery. In this study, we hypothesized that transplantation of human adipose-derived stromal cells (hADSCs) using polycaprolactone (PCL) scaffolds fabricated with a solid free-form fabrication method would better maintain the volume of regenerated adipose tissues, as compared with the use of fibrin gel. Six weeks after implantation into the dorsal subcutaneous pockets of athymic mice, the volumes and adipose tissue areas of hADSC-PCL scaffold implants were significantly larger than those of hADSC-fibrin implants. In addition, the mRNA expression of adipogenic genes was more extensive in the hADSC-PCL scaffold implants.
Collapse
|
46
|
Chua KH, Raduan F, Wan Safwani WKZ, Manzor NFM, Pingguan-Murphy B, Sathapan S. Effects of serum reduction and VEGF supplementation on angiogenic potential of human adipose stromal cells in vitro. Cell Prolif 2013; 46:300-11. [PMID: 23672290 DOI: 10.1111/cpr.12029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/24/2012] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study investigated effects of reduced serum condition and vascular endothelial growth factor (VEGF) on angiogenic potential of adipose stromal cells (ASCs) in vitro. MATERIALS AND METHODS Adipose stromal cells were cultured in three different types of medium: (i) F12/DMEM (FD) supplemented with 10% FBS from passage 0 (P0) to P6; (ii) FD supplemented with 2% FBS at P6; and (iii) FD supplemented with 2% FBS plus 50 ng/ml of VEGF at P6. Morphological changes and growth rate of ASCs were recorded. Changes in stemness, angiogenic and endogenic genes' expressions were analysed using Real-Time PCR. RESULTS Adipose stromal cells changed from fibroblast-like shape when cultured in 10% FBS medium to polygonal when cultured in 2% FBS plus VEGF-supplemented medium. Their growth rate was lower in 2% FBS medium, but increased with addition of VEGF. Real-Time PCR showed that ASCs maintained most of their stemness and angiogenic genes' expression in 10% FBS at P1, P5 and P6, but this increased significantly in 2% FBS at P6. Endogenic genes expression such as PECAM-1, VE chaderin and VEGFR-2 decreased after serial passage in 10% FBS, but increased significantly at P6 in 2% FBS. Addition of VEGF did not cause any significant change in gene expression level. CONCLUSION Adipose stromal cells had greater angiogenic potential when cultured in reduced serum conditions. VEGF did not enhance their angiogenic potential in 2% FBS-supplemented medium.
Collapse
Affiliation(s)
- K H Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA; Department of Molecular Biology; Princeton University; Princeton, NJ USA
| |
Collapse
|
48
|
Phull MK, Eydmann T, Roxburgh J, Sharpe JR, Lawrence-Watt DJ, Phillips G, Martin Y. Novel macro-microporous gelatin scaffold fabricated by particulate leaching for soft tissue reconstruction with adipose-derived stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:461-467. [PMID: 23143193 DOI: 10.1007/s10856-012-4806-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
The restoration of body contours as shaped by adipose tissue remains a clinical challenge specifically in patients who have experienced loss of contour due to trauma, surgical removal of tumours or congenital abnormalities. We have developed a novel macro-microporous biomaterial for use in soft tissue re-bulking and augmentation. Alginate beads provided the pore template for the construct. Incorporation, and subsequent dissolution, of the beads within a 7 % (w/v) gelatin matrix, produced a highly porous scaffold with an average pore size of 2.01 ± 0.08 mm. The ability of this scaffold to support the in vitro growth and differentiation of human adipose-derived stem cells (ADSCs) was then investigated. Histological analysis confirmed that the scaffold itself provided a suitable environment to support the growth of ADSCs on the scaffold walls. When delivered into the macropores in a fibrin hydrogel, ADSCs proliferated and filled the pores. In addition, ADSCs could readily be differentiated along the adipogenic lineage. These results therefore describe a novel scaffold that can support the proliferation and delivery of ADSCs. The scaffold is the first stage in developing a clinical alternative to current treatment methods for soft tissue reconstruction.
Collapse
|
49
|
Intrinsic dynamics of the fat graft: in vitro interactions between the main cell actors. Plast Reconstr Surg 2013; 130:1001-1009. [PMID: 22777036 DOI: 10.1097/prs.0b013e318267d3fb] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Successful soft-tissue reconstruction requires autologous tissue transfer in respect to the increasingly important "replace like-with-like" principle. Autologous lipoaspirate material for fat grafting can easily be obtained in large amounts without substantial donor-site morbidity. The exact nature and fate of the different cells in the transplanted fat graft and their contribution to tissue reconstruction, however, remain largely unknown. METHODS Adipose tissue was harvested from healthy female patients. CD34+ adipose-derived stem cells were isolated through magnetic-activated cell sorting and brought into co-culture with mature adipocytes in various culture medium conditions. Proliferation and differentiation of the adipose-derived stem cells were examined through histology, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and polymerase chain reaction assays. RESULTS This study demonstrates that adipose-derived stem cells from fresh adipose tissue can be isolated within a few hours via magnetic-activated cell sorting with selection for CD34+ cells. All unpassaged adipose-derived stem cells in fresh adipose tissue are CD34+. Subsets include CD34+ CD31+ and CD34+ CD271+. No CD34+ CD45+ cells were present. Histological staining, polymerase chain reaction, and MTT assays confirm that purified mature adipose cells incite adipose-derived stem cells proliferation and adipose differentiation in vitro. CONCLUSIONS This in vitro study demonstrates important interactions between the main actors in the adipose graft, the adipose-derived stem cells and the mature adipocytes. Although the eventual fate of these cells in a clinically implemented fat graft is still largely unknown, the results of this study support the theory that lipofilling can be conceived as an in vivo tissue engineering approach in which the mature adipocytes within fat grafts support proliferation and differentiation in the co-grafted stromal cell population.
Collapse
|
50
|
Chhaya MP, Melchels FP, Wiggenhauser PS, Schantz JT, Hutmacher DW. Breast Reconstruction Using Biofabrication-Based Tissue Engineering Strategies. Biofabrication 2013. [DOI: 10.1016/b978-1-4557-2852-7.00010-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|