1
|
Okamura H, Hirota K, Yoshida K, Weng Y, He Y, Shiotsu N, Ikegame M, Uchida-Fukuhara Y, Tanai A, Guo J. Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:138-146. [PMID: 34484474 PMCID: PMC8399048 DOI: 10.1016/j.jdsr.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have been recognized as a universal method of cellular communications and are reportedly produced in bacteria, archaea, and eukaryotes. Bacterial EVs are often called “Outer Membrane Vesicles” (OMVs) as they were the result of a controlled blebbing of the outer membrane of gram-negative bacteria such as Porphyromonas gingivalis (P. gingivalis). Bacterial EVs are natural messengers, implicated in intra- and inter-species cell-to-cell communication among microorganism populations present in microbiota. Bacteria can incorporate their pathogens into OMVs; the content of OMVs differs, depending on the type of bacteria. The production of distinct types of OMVs can be mediated by different factors and routes. A recent study highlighted OMVs ability to carry crucial molecules implicated in immune modulation, and, nowadays, they are considered as a way to communicate and transfer messages from the bacteria to the host and vice versa. This review article focuses on the current understanding of OMVs produced from major oral bacteria, P. gingivalis: generation, characteristics, and contents as well as the involvement in signal transduction of host cells and systemic diseases. Our recent study regarding the action of P. gingivalis OMVs in the living body is also summarized.
Collapse
Affiliation(s)
- Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Katsuhiko Hirota
- Department of Medical Hygiene, Dental Hygiene Course, Kochi Gakuen College, Kochi 780-0955, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Yuhan He
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Noriko Shiotsu
- Comprehensive Dental Clinic, Okayama University Hospital, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan
| | - Jiajie Guo
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kitaku, Okayama 770-8525, Japan.,Department of Endodontics, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, China
| |
Collapse
|
2
|
Qiao W, Wang F, Xu X, Wang S, Regenstein JM, Bao B, Ma M. Egg yolk immunoglobulin interactions with Porphyromonas gingivalis to impact periodontal inflammation and halitosis. AMB Express 2018; 8:176. [PMID: 30374625 PMCID: PMC6206315 DOI: 10.1186/s13568-018-0706-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023] Open
Abstract
Porphyromonas gingivalis is a pathogenic Gram-negative anaerobic bacterium that colonizes the subgingival region of gums. These bacteria can invade periodontal tissues, form plaques, and produce volatile sulfur compounds (VSC) and volatile organic compounds (VOC). Egg yolk immunoglobulin (IgY) that was specifically produced in egg yolks after chickens were challenged with P. gingivalis could control and prevent oral diseases caused by P. gingivalis. The releases of P. gingivalis offensive metabolic odors in vitro and in vivo were determined using a Halimeter and GCMS. With IgY bacterial growth was inhibited, and the relative amounts of VOC and VSC were decreased. The scores for the oral health index and the levels of IL-6 and TNF-α are also decreased. All treatment groups showed significant anti-inflammatory effects, which strongly suggests that specifically IgY against P. gingivalis may be an effective treatment for the prevention and protection of periodontal inflammation and halitosis.
Collapse
|
3
|
Puth S, Hong SH, Park MJ, Lee HH, Lee YS, Jeong K, Kang IC, Koh JT, Moon B, Park SC, Rhee JH, Lee SE. Mucosal immunization with a flagellin-adjuvanted Hgp44 vaccine enhances protective immune responses in a murine Porphyromonas gingivalis infection model. Hum Vaccin Immunother 2017; 13:2794-2803. [PMID: 28604268 PMCID: PMC5718812 DOI: 10.1080/21645515.2017.1327109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic periodontitis is caused by interactions between the oral polymicrobial community and host factors. Periodontal diseases are associated with dysbiotic shift in oral microbiota. Vaccination against periodontopathic bacteria could be a fundamental therapeutic to modulate polymicrobial biofilms. Because oral cavity is the site of periodontopathic bacterial colonization, mucosal vaccines should provide better protection than vaccines administered systemically. We previously reported that bacterial flagellin is an excellent mucosal adjuvant. In this study, we investigated whether mucosal immunization with a flagellin-adjuvanted polypeptide vaccine induces protective immune responses using a Porphyromonas gingivalis infection model. We used the Hgp44 domain polypeptide of Arg-gingipain A (RgpA) as a mucosal antigen. Intranasal (IN) immunization induced a significantly higher Hgp44-specific IgG titer in the serum of mice than sublingual (SL) administration. The co-administration of flagellin potentiated serum IgG responses for both the IN and SL vaccinations. On the other hand, the anti-Hgp44-specific IgA titer in the saliva was comparable between IN and SL vaccinations, suggesting SL administration as more compliant vaccination route for periodontal vaccines. The co-administration of flagellin significantly potentiated the secretory IgA response in saliva also. Furthermore, mice administered a mixture of Hgp44 and flagellin via the IN and SL routes exhibited significant reductions in alveolar bone loss induced by live P. gingivalis infections. An intranasally administered Hgp44-flagellin fusion protein induced a comparable level of Hgp44-specific antibody responses to the mixture of Hgp44 and flagellin. Overall, a flagellin-adjuvanted Hgp44 antigen would serve an important component for a multivalent mucosal vaccine against polymicrobial periodontitis.
Collapse
Affiliation(s)
- Sao Puth
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Seol Hee Hong
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Mi Jin Park
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Hye Hwa Lee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Youn Suhk Lee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Kwangjoon Jeong
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - In-Chol Kang
- d Department of Oral Microbiology, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea
| | - Jeong Tae Koh
- c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Byounggon Moon
- e Well Aging Research Center, Samsung Adv. Inst. of Technology (SAIT) , Samsung Electronics Co., Ltd. Suwon-si , Gyeonggi-do , Republic of Korea
| | - Sang Chul Park
- e Well Aging Research Center, Samsung Adv. Inst. of Technology (SAIT) , Samsung Electronics Co., Ltd. Suwon-si , Gyeonggi-do , Republic of Korea
| | - Joon Haeng Rhee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Shee Eun Lee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| |
Collapse
|
5
|
Role of the hemin-binding protein 35 (HBP35) of Porphyromonas gingivalis in coaggregation. Microb Pathog 2007; 44:320-8. [PMID: 18053679 DOI: 10.1016/j.micpath.2007.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/06/2007] [Accepted: 10/12/2007] [Indexed: 11/22/2022]
Abstract
Hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis is one of the outer membrane proteins and has been reported to be a non-fimbrial coaggregation factor. In this study, a P. gingivalis HBP35-deficient mutant (MD774) was constructed from wild-type strain FDC381 by insertion mutagenesis in order to provide a better understanding of this protein's role in coaggregation. The intact cells and vesicles in FDC381 were found to have strong aggregation activities with Gram-positive bacteria. But neither the vesicles nor the intact cells showed aggregation activity in MD774. In addition, MD774 reduced autoaggregation activity. Immunoblot analysis of MD774 showed the presence of a non-maturated 45-kDa fimbrillin protein. Electron microscopy showed that the MD774 had no long fimbriae on the cell surface. Arg- and Lys-gingipain activity in MD774 was significantly decreased, compared with FDC381. Real-time RT-PCR demonstrated a significant reduction in the expression of gingipain-associated genes rgpA, rgpB, and kgp. In conclusion, we suggest that the reduction in coaggregation was caused by the combined reduction of a variety of molecules, including HBP35, gingipains, and fimbriae. Our results suggest that the HBP35 protein directly influences not only coaggregation as an adhesion molecule but also indirectly influences the expression of other coaggregation factors.
Collapse
|
6
|
Teng YTA. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium. J Dent Res 2006; 85:198-208. [PMID: 16498065 DOI: 10.1177/154405910608500301] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|