1
|
Patil R, Alimperti S. Graphene in 3D Bioprinting. J Funct Biomater 2024; 15:82. [PMID: 38667539 PMCID: PMC11051043 DOI: 10.3390/jfb15040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional (3D) bioprinting is a fast prototyping fabrication approach that allows the development of new implants for tissue restoration. Although various materials have been utilized for this process, they lack mechanical, electrical, chemical, and biological properties. To overcome those limitations, graphene-based materials demonstrate unique mechanical and electrical properties, morphology, and impermeability, making them excellent candidates for 3D bioprinting. This review summarizes the latest developments in graphene-based materials in 3D printing and their application in tissue engineering and regenerative medicine. Over the years, different 3D printing approaches have utilized graphene-based materials, such as graphene, graphene oxide (GO), reduced GO (rGO), and functional GO (fGO). This process involves controlling multiple factors, such as graphene dispersion, viscosity, and post-curing, which impact the properties of the 3D-printed graphene-based constructs. To this end, those materials combined with 3D printing approaches have demonstrated prominent regeneration potential for bone, neural, cardiac, and skin tissues. Overall, graphene in 3D bioprinting may pave the way for new regenerative strategies with translational implications in orthopedics, neurology, and cardiovascular areas.
Collapse
Affiliation(s)
- Rahul Patil
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC 20057, USA
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
2
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
3
|
Cedillo-Servin G, Dahri O, Meneses J, van Duijn J, Moon H, Sage F, Silva J, Pereira A, Magalhães FD, Malda J, Geijsen N, Pinto AM, Castilho M. 3D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307178. [PMID: 37950402 DOI: 10.1002/smll.202307178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Indexed: 11/12/2023]
Abstract
This work reports the rational design and fabrication of magneto-active microfiber meshes with controlled hexagonal microstructures via melt electrowriting (MEW) of a magnetized polycaprolactone-based composite. In situ iron oxide nanoparticle deposition on oxidized graphene yields homogeneously dispersed magnetic particles with sizes above 0.5 µm and low aspect ratio, preventing cellular internalization and toxicity. With these fillers, homogeneous magnetic composites with high magnetic content (up to 20 weight %) are obtained and processed in a solvent-free manner for the first time. MEW of magnetic composites enabled the creation of skeletal muscle-inspired design of hexagonal scaffolds with tunable fiber diameter, reconfigurable modularity, and zonal distribution of magneto-active and nonactive material, with elastic tensile deformability. External magnetic fields below 300 mT are sufficient to trigger out-of-plane reversible deformation. In vitro culture of C2C12 myoblasts on three-dimensional (3D) Matrigel/collagen/MEW scaffolds showed that microfibers guided the formation of 3D myotube architectures, and the presence of magnetic particles does not significantly affect viability or differentiation rates after 8 days. Centimeter-sized skeletal muscle constructs allowed for reversible, continued, and dynamic magneto-mechanical stimulation. Overall, these innovative microfiber scaffolds provide magnetically deformable platforms suitable for dynamic culture of skeletal muscle, offering potential for in vitro disease modeling.
Collapse
Affiliation(s)
- Gerardo Cedillo-Servin
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| | - Ouafa Dahri
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - João Meneses
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Joost van Duijn
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Harrison Moon
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
| | - Fanny Sage
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - Joana Silva
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - André Pereira
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Fernão D Magalhães
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Jos Malda
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3508 GA, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Node, The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, 2333 ZA, The Netherlands
| | - Artur M Pinto
- Departamento de Engenharia Química, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Miguel Castilho
- Department of Orthopaedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
4
|
Hou Y, Wang W, Bartolo P. The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications. Mater Today Bio 2024; 24:100886. [PMID: 38173865 PMCID: PMC10761775 DOI: 10.1016/j.mtbio.2023.100886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Bone cancer remains a critical healthcare problem. Among current clinical treatments, tumour resection is the most common strategy. It is usually effective but may present several limitations such as multiple operations, long hospital time, and the potential recurrence caused by the incomplete removal of cancer cells. To address these limitations, three-dimensional (3D) scaffolds fabricated through additive manufacturing have been researched for both bone cancer treatment and post-treatment rehabilitation. Polycaprolactone (PCL)-based scaffolds play an important role in bone regeneration, serving as a physical substrate to fill the defect site, recruiting cells, and promoting cell proliferation and differentiation, ultimately leading to the regeneration of the bone tissue without multiple surgical applications. Multiple advanced materials have been incorporated during the fabrication process to improve certain functions and/or modulate biological performances. Graphene-based nanomaterials, particularly graphene (G) and graphene oxide (GO), have been investigated both in vitro and in vivo, significantly improving the scaffold's physical, chemical, and biological properties, which strongly depend on the material type and concentration. A unique targeted inhibition effect on cancer cells was also discovered. However, limited research has been conducted on utilising graphene-based nanomaterials for both bone regeneration and bone cancer treatment, and there is no systematic study into the material- and dose-dependent effects, as well as the working mechanism on 3D scaffolds to realise these functions. This paper addresses these limitations by designing and fabricating PCL-based scaffolds containing different concentrations of G and GO and assessing their biological behaviour correlating it to the reactive oxygen species (ROS) release level. Results suggest that the ROS release from the scaffolds is a dominant mechanism that affects the biological behaviour of the scaffolds. ROS release also contributes to the inhibition effect on bone cancer due to healthy cells and cancer cells responding differently to ROS, and the osteogenesis results also present a certain correlation with ROS. These observations revealed a new route for realising bone cancer treatment and subsequent new bone regeneration, using a single dual-functional 3D scaffold.
Collapse
Affiliation(s)
- Yanhao Hou
- School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Weiguang Wang
- School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Paulo Bartolo
- School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
6
|
Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions. BIOLOGY 2022; 11:biology11121706. [PMID: 36552216 PMCID: PMC9774464 DOI: 10.3390/biology11121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites' surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell-material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications.
Collapse
|
7
|
3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14091834. [PMID: 36145582 PMCID: PMC9503344 DOI: 10.3390/pharmaceutics14091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Graphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment. Therefore, developing 3D graphene scaffolds is the next clinical standard, yet most have been fabricated as foams which limit control of consistent morphology and porosity. To overcome this issue, 3D-printing technology is revolutionizing tissue engineering, due to its speed, accuracy, reproducibility, and overall ability to personalize treatment whereby scaffolds are printed to the exact dimensions of a tissue defect. Even though various 3D-printing techniques are available, practical applications of 3D-printed graphene scaffolds are still limited. This can be attributed to variations associated with fabrication of graphene derivatives, leading to variations in cell response. This review summarizes selected works describing the different fabrication techniques for 3D scaffolds, the novelty of graphene materials, and the use of 3D-printed scaffolds of graphene-based nanoparticles for bone tissue engineering.
Collapse
|
8
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
9
|
Daskalakis E, Huang B, Vyas C, Acar AA, Liu F, Fallah A, Cooper G, Weightman A, Blunn G, Koç B, Bartolo P. Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds. ACS OMEGA 2022; 7:7515-7530. [PMID: 35284712 PMCID: PMC8908495 DOI: 10.1021/acsomega.1c05437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/14/2022] [Indexed: 05/14/2023]
Abstract
Large bone loss injuries require high-performance scaffolds with an architecture and material composition resembling native bone. However, most bone scaffold studies focus on three-dimensional (3D) structures with simple rectangular or circular geometries and uniform pores, not able to recapitulate the geometric characteristics of the native tissue. This paper addresses this limitation by proposing novel anatomically designed scaffolds (bone bricks) with nonuniform pore dimensions (pore size gradients) designed based on new lay-dawn pattern strategies. The gradient design allows one to tailor the properties of the bricks and together with the incorporation of ceramic materials allows one to obtain structures with high mechanical properties (higher than reported in the literature for the same material composition) and improved biological characteristics.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Boyang Huang
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Cian Vyas
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Anil A. Acar
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology
Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Fengyuan Liu
- Department of
Mechanical Engineering, School of Civil, Aerospace and Mechanical
Engineering, Faculty of Engineering, University
of Bristol, Bristol BS8 1TR, U.K.
| | - Ali Fallah
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology
Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Glen Cooper
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Andrew Weightman
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PortsmouthPO1 2DT, U.K.
| | - Bahattin Koç
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology
Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Paulo Bartolo
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
- Singapore
Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
- ,
| |
Collapse
|
10
|
Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractBone cancer is a critical health problem on a global scale, and the associated huge clinical and economic burdens are still rising. Although many clinical approaches are currently used for bone cancer treatment, these methods usually affect the normal body functions and thus present significant limitations. Meanwhile, advanced materials and additive manufacturing have opened up promising avenues for the development of new strategies targeting both bone cancer treatment and post-treatment bone regeneration. This paper presents a comprehensive review of bone cancer and its current treatment methods, particularly focusing on a number of advanced strategies such as scaffolds based on advanced functional materials, drug-loaded scaffolds, and scaffolds for photothermal/magnetothermal therapy. Finally, the main research challenges and future perspectives are elaborated.
Collapse
|
11
|
Meneses J, van de Kemp T, Costa-Almeida R, Pereira R, Magalhães FD, Castilho M, Pinto AM. Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers (Basel) 2022; 14:1038. [PMID: 35267861 PMCID: PMC8914623 DOI: 10.3390/polym14051038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Graphene-based materials (GBM) are considered one of the 21st century's most promising materials, as they are incredibly light, strong, thin and have remarkable electrical and thermal properties. As a result, over the past decade, their combination with a diverse range of synthetic polymers has been explored in tissue engineering (TE) and regenerative medicine (RM). In addition, a wide range of methods for fabricating polymer/GBM scaffolds have been reported. This review provides an overview of the most recent advances in polymer/GBM composite development and fabrication, focusing on methods such as electrospinning and additive manufacturing (AM). As a future outlook, this work stresses the need for more in vivo studies to validate polymer/GBM composite scaffolds for TE applications, and gives insight on their fabrication by state-of-the-art processing technologies.
Collapse
Affiliation(s)
- João Meneses
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Tom van de Kemp
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Raquel Costa-Almeida
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rúben Pereira
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
12
|
Unnikrishnan K, Thomas LV, Ram Kumar RM. Advancement of Scaffold-Based 3D Cellular Models in Cancer Tissue Engineering: An Update. Front Oncol 2021; 11:733652. [PMID: 34760696 PMCID: PMC8573168 DOI: 10.3389/fonc.2021.733652] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
The lack of traditional cancer treatments has resulted in an increased need for new clinical techniques. Standard two-dimensional (2D) models used to validate drug efficacy and screening have a low in vitro-in vivo translation potential. Recreating the in vivo tumor microenvironment at the three-dimensional (3D) level is essential to resolve these limitations in the 2D culture and improve therapy results. The physical and mechanical environments of 3D culture allow cancer cells to expand in a heterogeneous manner, adopt different phenotypes, gene and protein profiles, and develop metastatic potential and drug resistance similar to human tumors. The current application of 3D scaffold culture systems based on synthetic polymers or selected extracellular matrix components promotes signalling, survival, and cancer cell proliferation. This review will focus on the recent advancement of numerous 3D-based scaffold models for cancer tissue engineering, which will increase the predictive ability of preclinical studies and significantly improve clinical translation.
Collapse
Affiliation(s)
- Kavitha Unnikrishnan
- Department of Cancer Research, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Lynda Velutheril Thomas
- Division of Tissue Engineering & Regenerative Technology, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ram Mohan Ram Kumar
- Department of Cancer Research, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
13
|
Cámara-Torres M, Sinha R, Eqtesadi S, Wendelbo R, Scatto M, Scopece P, Sanchez A, Villanueva S, Egizabal A, Álvarez N, Patelli A, Mota C, Moroni L. Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composite printability and cell interactions. NANOSCALE 2021; 13:14382-14398. [PMID: 34473168 DOI: 10.1039/d1nr02927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene derivatives combined with polymers have attracted enormous attention for bone tissue engineering applications. Among others, reduced graphene oxide (rGO) is one of the preferred graphene-based fillers for the preparation of composites via melt compounding, and their further processing into 3D scaffolds, due to its established large-scale production method, thermal stability, and electrical conductivity. In this study, rGO (low bulk density 10 g L-1) was compacted by densification using a solvent (either acetone or water) prior to melt compounding, to simplify its handling and dosing into a twin-screw extrusion system. The effects of rGO bulk density (medium and high), densification solvent, and rGO concentration (3, 10 and 15% in weight) on rGO dispersion within the composite, electrical conductivity, printability and cell-material interactions were studied. High bulk density rGO (90 g L-1) occupied a low volume fraction within polymer composites, offering poor electrical properties but a reproducible printability up to 15 wt% rGO. On the other hand, the volume fraction within the composites of medium bulk density rGO (50 g L-1) was higher for a given concentration, enhancing rGO particle interactions and leading to enhanced electrical conductivity, but compromising the printability window. For a given bulk density (50 g L-1), rGO densified in water was more compacted and offered poorer dispersability within the polymer than rGO densified in acetone, and resulted in scaffolds with poor layer bonding or even lack of printability at high rGO percentages. A balance in printability and electrical properties was obtained for composites with medium bulk density achieved with rGO densified in acetone. Here, increasing rGO concentration led to more hydrophilic composites with a noticeable increase in protein adsorption. Moreover, scaffolds prepared with such composites presented antimicrobial properties even at low rGO contents (3 wt%). In addition, the viability and proliferation of human mesenchymal stromal cells (hMSCs) were maintained on scaffolds with up to 15% rGO and with enhanced osteogenic differentiation on 3% rGO scaffolds.
Collapse
Affiliation(s)
- María Cámara-Torres
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Ravi Sinha
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | | | | | - Marco Scatto
- Nadir S.r.l., Via Torino, 155/b, 30172 Venice, Italy
| | - Paolo Scopece
- Nadir S.r.l., Via Torino, 155/b, 30172 Venice, Italy
| | - Alberto Sanchez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Sara Villanueva
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Ainhoa Egizabal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Noelia Álvarez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Alessandro Patelli
- Department of Physics and Astronomy, Padova University, Via Marzolo, 8, 35131 Padova, Italy
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
14
|
Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting. Essays Biochem 2021; 65:441-466. [PMID: 34296738 DOI: 10.1042/ebc20210003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Existing methods of engineering alternatives to restore or replace damaged or lost tissues are not satisfactory due to the lack of suitable constructs that can fit precisely, function properly and integrate into host tissues. Recently, three-dimensional (3D) bioprinting approaches have been developed to enable the fabrication of pre-programmed synthetic tissue constructs that have precise geometries and controlled cellular composition and spatial distribution. New bioinks with electroconductive properties have the potential to influence cellular fates and function for directed healing of different tissue types including bone, heart and nervous tissue with the possibility of improved outcomes. In the present paper, we review the use of electroconductive biomaterials for the engineering of tissues via 3D printing and 3D bioprinting. Despite significant advances, there remain challenges to effective tissue replacement and we address these challenges and describe new approaches to advanced tissue engineering.
Collapse
|
15
|
Hou Y, Wang W, Bartolo P. A concise review on the role of selenium for bone cancer applications. Bone 2021; 149:115974. [PMID: 33901723 DOI: 10.1016/j.bone.2021.115974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023]
Abstract
Cancer is one of the most challenging health problems in the world. Several clinical treatments have been developed, but all presenting several limitations. Among different types of cancer, bone cancer is less common, and limited new clinical treatment strategies have been proposed. Recently, a range of advanced materials has been investigated and applied for bone cancer treatment applications. However, due to the unique physiological properties of the bone tissue (a load-bearing tissue), the selection of the right type of material or the combination of suitable functional materials and base materials are critical. Selenium has been reported to present specific targeting inhibition effects on bone cancer without affecting the surrounding healthy tissue, revealing a huge potential for the development of new bone cancer treatment strategies. This paper presents a concise review on the use of selenium for bone cancer applications, discussing main synthesis methods, biocompatibility, and cytotoxicity aspects and the combination of selenium with a wide range of ceramics, metals, and polymers. Future perspectives and the novel concept of a dual-functional scaffold for both cancer treatment and new bone regeneration are also discussed.
Collapse
Affiliation(s)
- Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
16
|
Wang W, Hou Y, Martinez D, Kurniawan D, Chiang WH, Bartolo P. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers (Basel) 2020; 12:E2946. [PMID: 33317211 PMCID: PMC7764097 DOI: 10.3390/polym12122946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Dean Martinez
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| |
Collapse
|