1
|
Talasila KM, Røsland GV, Hagland HR, Eskilsson E, Flønes IH, Fritah S, Azuaje F, Atai N, Harter PN, Mittelbronn M, Andersen M, Joseph JV, Hossain JA, Vallar L, Noorden CJFV, Niclou SP, Thorsen F, Tronstad KJ, Tzoulis C, Bjerkvig R, Miletic H. The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro Oncol 2017; 19:383-393. [PMID: 27591677 DOI: 10.1093/neuonc/now175] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/09/2016] [Indexed: 12/23/2022] Open
Abstract
Background Invasion and angiogenesis are major hallmarks of glioblastoma (GBM) growth. While invasive tumor cells grow adjacent to blood vessels in normal brain tissue, tumor cells within neovascularized regions exhibit hypoxic stress and promote angiogenesis. The distinct microenvironments likely differentially affect metabolic processes within the tumor cells. Methods In the present study, we analyzed gene expression and metabolic changes in a human GBM xenograft model that displayed invasive and angiogenic phenotypes. In addition, we used glioma patient biopsies to confirm the results from the xenograft model. Results We demonstrate that the angiogenic switch in our xenograft model is linked to a proneural-to-mesenchymal transition that is associated with upregulation of the transcription factors BHLHE40, CEBPB, and STAT3. Metabolic analyses revealed that angiogenic xenografts employed higher rates of glycolysis compared with invasive xenografts. Likewise, patient biopsies exhibited higher expression of the glycolytic enzyme lactate dehydrogenase A and glucose transporter 1 in hypoxic areas compared with the invasive edge and lower-grade tumors. Analysis of the mitochondrial respiratory chain showed reduction of complex I in angiogenic xenografts and hypoxic regions of GBM samples compared with invasive xenografts, nonhypoxic GBM regions, and lower-grade tumors. In vitro hypoxia experiments additionally revealed metabolic adaptation of invasive tumor cells, which increased lactate production under long-term hypoxia. Conclusions The use of glycolysis versus mitochondrial respiration for energy production within human GBM tumors is highly dependent on the specific microenvironment. The metabolic adaptability of GBM cells highlights the difficulty of targeting one specific metabolic pathway for effective therapeutic intervention.
Collapse
Affiliation(s)
- Krishna M Talasila
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Norway
| | | | - Eskil Eskilsson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Irene H Flønes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sabrina Fritah
- NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Francisco Azuaje
- NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Nadia Atai
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Andersen
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Justin V Joseph
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway
| | - Jubayer Al Hossain
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Laurent Vallar
- Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Cornelis J F van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Simone P Niclou
- KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Frits Thorsen
- KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | | | | | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Jiang Z, Wang Y, Zhang X, Peng T, Li Y, Zhang Y. Protective Effect of Ginsenoside R0 on Anoxic and Oxidative Damage In vitro. Biomol Ther (Seoul) 2012; 20:544-9. [PMID: 24009848 PMCID: PMC3762288 DOI: 10.4062/biomolther.2012.20.6.544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/08/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022] Open
Abstract
To examine the neuroprotective effects of ginsenoside R0, we investigated the effects of ginsenoside R0 in PC12 cells under an anoxic or oxidative environment with Edaravone as a control. PC12 neuroendocrine cells were used as a model target. Anoxic damage or oxidative damage in PC12 cells were induced by adding sodium dithionite or hydrogen peroxide respectively in cultured medium. Survival ratios of different groups were detected by an AlamarBlue assay. At the same time, the apoptosis of PC12 cells were determined with flow cytometry. The putative neuroprotective effects of ginsenoside R0 is thought to be exerted through enhancing the activity of antioxidant enzymes Superoxide dismutases (SOD). The activity of SOD and the level of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), were measured to evaluate the protective and therapeutic effects of ginsenoside R0. Ginsenoside R0 treated cells had a higher SOD activity, lower MDA level and lower ROS, and their survival ratio was higher with a lower apoptosis rate. It is suggested that ginsenoside R0 has a protective effect in the cultured PC12 cells, and the protection efficiency is higher than Edaravone. The protective mechanisms of these two are different. The prevent ability of ginsenoside R0 is higher than its repair ability in neuroprotection in vitro.
Collapse
Affiliation(s)
- Zhou Jiang
- Key Laboratory of Chronobiology, Ministry of Health, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuhui Wang
- Key Laboratory of Chronobiology, Ministry of Health, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyun Zhang
- Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Tao Peng
- Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Yanqing Li
- Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Yi Zhang
- Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| |
Collapse
|
3
|
Miller JA, Runkle SA, Tjalkens RB, Philbert MA. 1,3-Dinitrobenzene-induced metabolic impairment through selective inactivation of the pyruvate dehydrogenase complex. Toxicol Sci 2011; 122:502-11. [PMID: 21551353 DOI: 10.1093/toxsci/kfr102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prolonged exposure to the chemical intermediate, 1,3-dinitrobenzene (1,3-DNB), produces neuropathology in the central nervous system of rodents analogous to that observed in various conditions of acute energy deprivation including thiamine deficiency and Leigh's necrotizing encephalopathy. Increased production of reactive intermediates in addition to induction of oxidative stress has been implicated in the neurotoxic mechanism of 1,3-DNB, but a clear metabolic target has not been determined. Here we propose that similar to thiamine deficiency, the effects of 1,3-DNB on metabolic status may be due to inhibition of the thiamine-dependent α-ketoacid dehydrogenase complexes. The effects of 1,3-DNB on astroglial metabolic status and α-ketoacid dehydrogenase activity were evaluated using rat C6 glioma cells. Exposure to 1,3-DNB resulted in altered morphology and biochemical dysfunction consistent with disruption of oxidative energy metabolism. Cotreatment with acetyl-carnitine or acetoacetate attenuated morphological and metabolic effects of 1,3-DNB exposure as well as increased cell viability. 1,3-DNB exposure inhibited pyruvate dehydrogenase complex (PDHc) and the inhibition correlated with the loss of lipoic acid (LA) immunoreactivity, suggesting that modification of LA is a potential mechanism of inhibition. Treatment with antioxidants and thiol-containing compounds failed to protect against loss of LA. Alternatively, inhibition of dihydrolipoamide dehydrogenase, the E3 component of the complex attenuated loss of LA. Collectively, these data suggest that 1,3-DNB impairs oxidative energy metabolism through direct inhibition of the PDHc and that this impairment is due to perturbations in the function of protein-bound LA.
Collapse
Affiliation(s)
- James A Miller
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
4
|
Wilmer MJ, Kluijtmans LAJ, van der Velden TJ, Willems PH, Scheffer PG, Masereeuw R, Monnens LA, van den Heuvel LP, Levtchenko EN. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells. Biochim Biophys Acta Mol Basis Dis 2011; 1812:643-51. [PMID: 21371554 DOI: 10.1016/j.bbadis.2011.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 01/28/2011] [Accepted: 02/22/2011] [Indexed: 11/28/2022]
Abstract
Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.
Collapse
Affiliation(s)
- Martijn J Wilmer
- Laboratory of Genetic Endocrine and Metabolic Diseases, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 2009; 339:449-57. [PMID: 19902259 PMCID: PMC2817082 DOI: 10.1007/s00441-009-0882-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022]
Abstract
Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and xenobiotics are the main functions of the renal proximal tubular (PT) epithelium. A human PT cell line expressing a range of functional transporters would help to augment current knowledge in renal physiology and pharmacology. We have established and characterized a conditionally immortalized PT epithelial cell line (ciPTEC) obtained by transfecting and subcloning cells exfoliated in the urine of a healthy volunteer. The PT origin of this line has been confirmed morphologically and by the expression of aminopeptidase N, zona occludens 1, aquaporin 1, dipeptidyl peptidase IV and multidrug resistance protein 4 together with alkaline phosphatase activity. ciPTEC assembles in a tight monolayer with limited diffusion of inulin-fluorescein-isothiocyanate. Concentration and time-dependent reabsorption of albumin via endocytosis has been demonstrated, together with sodium-dependent phosphate uptake. The expression and activity of apical efflux transporter p-glycoprotein and of baso-lateral influx transporter organic cation transporter 2 have been shown in ciPTEC. This established human ciPTEC expressing multiple endogenous organic ion transporters mimicking renal reabsorption and excretion represents a powerful tool for future in vitro transport studies in pharmacology and physiology.
Collapse
|
6
|
Wilmer MJ, Willems PH, Verkaart S, Visch HJ, de Graaf-Hess A, Blom HJ, Monnens LA, van den Heuvel LP, Levtchenko EN. Cystine dimethylester model of cystinosis: still reliable? Pediatr Res 2007; 62:151-5. [PMID: 17597653 DOI: 10.1203/pdr.0b013e31809fd9a7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability of cystine dimethylester (CDME) to load lysosomes with cystine has been used to establish the basic defect in cystinosis: defective cystine exodus from lysosomes. Using CDME loading, it has been postulated that cystine accumulation in cystinosis affects mitochondrial ATP production, resulting in defective renal tubular reabsorption. Recent studies in cystinotic fibroblasts, however, show normal adenosine triphosphate (ATP) generation capacity. To investigate the effect of CDME in more detail, mitochondrial ATP generation, reactive oxygen species production, and viability are compared in fibroblasts loaded with CDME with those of cystinotic cells with a defective cystine transporter. Intracellular cystine levels were comparable in fibroblasts loaded with CDME (1 mM, 30 min) and cystinotic fibroblasts. Intracellular ATP levels and mitochondrial ATP production were decreased in fibroblasts loaded with CDME, but normal in cystinotic fibroblasts. Superoxide production was increased with 300% after CDME loading, whereas no changes were observed in cystinotic fibroblasts. Exposure to CDME led to cell death in a time- and concentration-dependent manner. Our data demonstrate that CDME has a toxic effect on mitochondrial ATP production and cell viability. These effects are not observed in cystinotic cells, indicating that a more appropriate model is required for studying the pathogenesis of cystinosis.
Collapse
Affiliation(s)
- Martijn J Wilmer
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. NATURE CLINICAL PRACTICE. CARDIOVASCULAR MEDICINE 2007; 4 Suppl 1:S60-7. [PMID: 17230217 PMCID: PMC3232050 DOI: 10.1038/ncpcardio0766] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 11/13/2006] [Indexed: 12/15/2022]
Abstract
Cardiogenesis within embryos or associated with heart repair requires stem cell differentiation into energetically competent, contracting cardiomyocytes. While it is widely accepted that the coordination of genetic circuits with developmental bioenergetics is critical to phenotype specification, the metabolic mechanisms that drive cardiac transformation are largely unknown. Here, we aim to define the energetic requirements for and the metabolic microenvironment needed to support the cardiac differentiation of embryonic stem cells. We demonstrate that anaerobic glycolytic metabolism, while sufficient for embryonic stem cell homeostasis, must be transformed into the more efficient mitochondrial oxidative metabolism to secure cardiac specification and excitation-contraction coupling. This energetic switch was programmed by rearrangement of the metabolic transcriptome that encodes components of glycolysis, fatty acid oxidation, the Krebs cycle, and the electron transport chain. Modifying the copy number of regulators of mitochondrial fusion and fission resulted in mitochondrial maturation and network expansion, which in turn provided an energetic continuum to supply nascent sarcomeres. Disrupting respiratory chain function prevented mitochondrial organization and compromised the energetic infrastructure, causing deficient sarcomerogenesis and contractile malfunction. Thus, establishment of the mitochondrial system and engagement of oxidative metabolism are prerequisites for the differentiation of stem cells into a functional cardiac phenotype. Mitochondria-dependent energetic circuits are thus critical regulators of de novo cardiogenesis and targets for heart regeneration.
Collapse
Affiliation(s)
- Susan Chung
- S Chung is a Bonner Scholar in Biochemistry and Molecular Biology, PP Dzeja is Assistant Professor of Pharmacology, RS Faustino is Fellow of the Asper Foundation, C Perez-Terzic is Assistant Professor of Physical Medicine and Rehabilitation and Medicine, A Behfar is a Clinician-Investigator Scholar, and A Terzic is Marriott Family Professor of Cardiovascular Research and Professor of Medicine and Pharmacology, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Petras P Dzeja
- S Chung is a Bonner Scholar in Biochemistry and Molecular Biology, PP Dzeja is Assistant Professor of Pharmacology, RS Faustino is Fellow of the Asper Foundation, C Perez-Terzic is Assistant Professor of Physical Medicine and Rehabilitation and Medicine, A Behfar is a Clinician-Investigator Scholar, and A Terzic is Marriott Family Professor of Cardiovascular Research and Professor of Medicine and Pharmacology, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Randolph S Faustino
- S Chung is a Bonner Scholar in Biochemistry and Molecular Biology, PP Dzeja is Assistant Professor of Pharmacology, RS Faustino is Fellow of the Asper Foundation, C Perez-Terzic is Assistant Professor of Physical Medicine and Rehabilitation and Medicine, A Behfar is a Clinician-Investigator Scholar, and A Terzic is Marriott Family Professor of Cardiovascular Research and Professor of Medicine and Pharmacology, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Carmen Perez-Terzic
- S Chung is a Bonner Scholar in Biochemistry and Molecular Biology, PP Dzeja is Assistant Professor of Pharmacology, RS Faustino is Fellow of the Asper Foundation, C Perez-Terzic is Assistant Professor of Physical Medicine and Rehabilitation and Medicine, A Behfar is a Clinician-Investigator Scholar, and A Terzic is Marriott Family Professor of Cardiovascular Research and Professor of Medicine and Pharmacology, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- S Chung is a Bonner Scholar in Biochemistry and Molecular Biology, PP Dzeja is Assistant Professor of Pharmacology, RS Faustino is Fellow of the Asper Foundation, C Perez-Terzic is Assistant Professor of Physical Medicine and Rehabilitation and Medicine, A Behfar is a Clinician-Investigator Scholar, and A Terzic is Marriott Family Professor of Cardiovascular Research and Professor of Medicine and Pharmacology, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- S Chung is a Bonner Scholar in Biochemistry and Molecular Biology, PP Dzeja is Assistant Professor of Pharmacology, RS Faustino is Fellow of the Asper Foundation, C Perez-Terzic is Assistant Professor of Physical Medicine and Rehabilitation and Medicine, A Behfar is a Clinician-Investigator Scholar, and A Terzic is Marriott Family Professor of Cardiovascular Research and Professor of Medicine and Pharmacology, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Levtchenko EN, Wilmer MJG, Janssen AJM, Koenderink JB, Visch HJ, Willems PHGM, de Graaf-Hess A, Blom HJ, van den Heuvel LP, Monnens LA. Decreased intracellular ATP content and intact mitochondrial energy generating capacity in human cystinotic fibroblasts. Pediatr Res 2006; 59:287-92. [PMID: 16439594 DOI: 10.1203/01.pdr.0000196334.46940.54] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cystinosis is an autosomal recessive lysosomal storage disorder caused by a defect in the lysosomal cystine carrier cystinosin. Cystinosis is the most common cause of inherited Fanconi syndrome leading to renal failure, in which the pathogenesis is still enigmatic. Based on studies of proximal tubules loaded with cystine dimethyl ester (CDME), altered mitochondrial adenosine triphosphate (ATP) production was proposed to be an underlying pathologic mechanism. Thus far, however, experimental evidence supporting this hypothesis in humans is lacking. In this study, energy metabolism was extensively investigated in primary fibroblasts derived from eight healthy subjects and eight patients with cystinosis. Patient's fibroblasts accumulated marked amounts of cystine and displayed a significant decrease in intracellular ATP content. Remarkably, overall energy-generating capacity, activity of respiratory chain complexes, ouabain-dependent rubidium uptake reflecting Na,K-ATPase activity, and bradykinin-stimulated mitochondrial ATP production were all normal in these cells. In conclusion, the data presented demonstrate that mitochondrial energy-generating capacity and Na,K-ATPase activity are intact in cultured cystinotic fibroblasts, thus questioning the idea of altered mitochondrial ATP synthesis as a keystone for the pathogenesis of cystinosis.
Collapse
Affiliation(s)
- Elena N Levtchenko
- Department of Pediatrics, Radboud University Nijmegen Medical Center, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Roy BM, Rau TD, Balcarcel RR. Toxic concentrations of exogenously supplied methylglyoxal in hybridoma cell culture. Cytotechnology 2005; 46:97-107. [PMID: 19003265 DOI: 10.1007/s10616-005-0301-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 06/17/2005] [Indexed: 02/02/2023] Open
Abstract
Concentrations at which methylglyoxal, a by-product of cellular metabolism, can be toxic to hybridoma cell cultures were determined using exogenously supplied doses. Trypan blue cell counts of 6-well cultures incubated for 24 h with various methylglyoxal concentrations revealed inhibition of cell growth at 300 muM and higher, with a median inhibitory concentration of 490+/-20 muM. The primary mode of death was apoptosis, as assessed by chromatin condensation, and the effects of methylglyoxal were observed to be complete by approximately eight hours. Yet, the impact of methylglyoxal was a function of the rate of dosing; stepwise addition of MG during the first 6 h of incubation inhibited growth but caused much less cell death than a comparable bolus dose. Inhibition of cellular metabolism by MG was found to coincide with inhibition of cell growth, with a comparable median inhibitory concentration of 360+/-20 muM. The effects on viable cell density and metabolism were both linear at doses approaching zero, with lowest observable effect levels of 54 and 77 muM, respectively. These results provide quantitative estimates for concentrations of methylglyoxal that may be inhibitory to biopharmaceutical-producing cell lines.
Collapse
Affiliation(s)
- Benjamin M Roy
- Department of Chemical Engineering, Vanderbilt University, VU Station B # 351604, 2301 Vanderbilt Place, Nashville, Tennessee, 37235-1604, USA
| | | | | |
Collapse
|