1
|
Badr ElDin N, Dabbish E, Fawaz E, Abd El-Rahman MK, Shoeib T. A green compliant hand-held selective electrode device for monitoring active pharmaceuticals and the kinetics of their degradation. Sci Rep 2023; 13:11792. [PMID: 37479792 PMCID: PMC10361986 DOI: 10.1038/s41598-023-38416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
An in-line smartphone connected to a screen-printed selective electrode hand-held device was used to determine the concentration of distigmine bromide (DB) in its pure and dosage forms as well as its degradation kinetics by continuously measuring the change in the produced emf over time. The main objective, supported by the data presented, is to produce a highly reliable smartphone integrated selective sensor as a portable analyzer with potential high cloud connectivity combining a wide linear dynamic range, the fastest response time with the lowest limits of detection and quantitation while best integrating green analytical chemistry principles. The choice of ionophore used in this approach was guided by computation and the data obtained was compared with traditional analytical techniques. DB, for which there are no previously reported stability-indicating methods and for which four novel such methods are proposed here, was selected as a model drug for this work. At-line UV-spectrophotometry DB assay was obtained by measuring the difference between the spectra of the degradation product and the same concentration of intact drug. The degradation kinetics were studied by this method through tracking the decrease of DB absorbance and/or the increase of a generated degradation product signal over time. Off-line separation based HPLC and TLC stability-indicating methods for DB were also presented. All methods employed in this work were validated for accuracy, precision, specificity, repeatability, linearity, range, detection and quantification limits according to the ICH guidelines and were applied to the analysis of laboratory prepared mixtures as well as commercial products. While all methods proposed were shown to be highly reliable, the smartphone integrated selective sensor is highlighted as a portable analyzer with potential high cloud connectivity and was shown to combine a wide linear dynamic range, the fastest response time with the lowest limits of detection and quantitation while best integrating green analytical chemistry principles.
Collapse
Affiliation(s)
- Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo, 11835, Egypt
| | - Esraa Fawaz
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Mohamed K Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt.
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
3
|
Coppé JP, Mori M, Pan B, Yau C, Wolf DM, Ruiz-Saenz A, Brunen D, Prahallad A, Cornelissen-Steijger P, Kemper K, Posch C, Wang C, Dreyer CA, Krijgsman O, Lee PRE, Chen Z, Peeper DS, Moasser MM, Bernards R, van 't Veer LJ. Mapping phospho-catalytic dependencies of therapy-resistant tumours reveals actionable vulnerabilities. Nat Cell Biol 2019; 21:778-790. [PMID: 31160710 DOI: 10.1038/s41556-019-0328-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Phosphorylation networks intimately regulate mechanisms of response to therapies. Mapping the phospho-catalytic profile of kinases in cells or tissues remains a challenge. Here, we introduce a practical high-throughput system to measure the enzymatic activity of kinases using biological peptide targets as phospho-sensors to reveal kinase dependencies in tumour biopsies and cell lines. A 228-peptide screen was developed to detect the activity of >60 kinases, including ABLs, AKTs, CDKs and MAPKs. Focusing on BRAFV600E tumours, we found mechanisms of intrinsic resistance to BRAFV600E-targeted therapy in colorectal cancer, including targetable parallel activation of PDPK1 and PRKCA. Furthermore, mapping the phospho-catalytic signatures of melanoma specimens identifies RPS6KB1 and PIM1 as emerging druggable vulnerabilities predictive of poor outcome in BRAFV600E patients. The results show that therapeutic resistance can be caused by the concerted upregulation of interdependent pathways. Our kinase activity-mapping system is a versatile strategy that innovates the exploration of actionable kinases for precision medicine.
Collapse
Affiliation(s)
- Jean-Philippe Coppé
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Miki Mori
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgical Oncology, Showa University, Tokyo, Japan
| | - Bo Pan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Christina Yau
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Ruiz-Saenz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Diede Brunen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anirudh Prahallad
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Kristel Kemper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christian Posch
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.,School of Medicine, Sigmund Freud University, Vienna, Austria
| | - Changjun Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Courtney A Dreyer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pei Rong Evelyn Lee
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongzhong Chen
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel S Peeper
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mark M Moasser
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura J van 't Veer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Sivakumar S, Soundhirarajan P, Venkatesan A, Khatiwada CP. Spectroscopic studies and antibacterial activities of pure and various levels of Cu-doped BaSO₄ nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:895-907. [PMID: 26184475 DOI: 10.1016/j.saa.2015.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 05/16/2023]
Abstract
The present study was made to design the pure and various levels of Cu doped (0.025 M, 0.05 M and 0.075 M) BaSO4 NPs synthesized by chemical precipitation method. The synthesized products have been characterised by X-ray Diffractometer (XRD), Fourier transform infrared (FT-IR) spectrometer, thermogravimetric and differential thermal analysis (TG-DTA), UV-Vis-diffused reflectance spectroscopy (UV-Vis-DRS), field emission-scanning electron microscopy with energy dispersive spectroscopy (FE-SEM with EDS), transmission electron microscopy (TEM) and application oriented study like antibacterial activity also reported. The result determined from XRD was affirmed by the results obtained from electron microscopic measurements. XRD study revealed that the synthesized products were composed of orthorhombic structure and highly crystalline in nature. Furthermore, flaky like morphology of pure and Cu-BaSO4 nanoparticles have been observed from the images obtained from these studies. The existence of Cu(2+) was confirmed by EDS analysis. The functional groups of the synthesized samples were analysed by FT-IR study. The band gap energies of pure and doped samples were accomplished using UV-Vis-DRS analysis. Also, the kinetic parameters were evaluated and reported from the thermal stability of nanoparticles. Eventually, gram-negative bacteria shows the less antibacterial activities compared to gram-positive bacteria due to adsorption of BaSO4 nanoparticles on the surface of the used bacteria.
Collapse
Affiliation(s)
- S Sivakumar
- Department of Physics, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| | - P Soundhirarajan
- Department of Physics, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - A Venkatesan
- Department of Physics, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | | |
Collapse
|
7
|
Fang C, Hou R, Zhou K, Hua F, Cong Y, Zhang J, Fu J, Cheng YJ. Surface functionalized barium sulfate nanoparticles: controlled in situ synthesis and application in bone cement. J Mater Chem B 2014; 2:1264-1274. [DOI: 10.1039/c3tb21544j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled in situ synthesis of MSAH-coated BaSO4 nanoparticles improves the mechanical properties and in vitro biocompatibility of the bone cements.
Collapse
Affiliation(s)
- Chao Fang
- Polymers and Composites Division
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo, P. R. China
- Faculty of Materials Science and Chemical Engineering
| | - Ruixia Hou
- Polymers and Composites Division
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo, P. R. China
| | - Kefeng Zhou
- Department of Radiology
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- Nanjing, P. R. China
| | - Feibin Hua
- School of Chemical Engineering
- Ningbo University of Technology
- Ningbo, P. R. China
| | - Yang Cong
- School of Chemical Engineering
- Ningbo University of Technology
- Ningbo, P. R. China
| | - Jianfeng Zhang
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo, P. R. China
| | - Jun Fu
- Polymers and Composites Division
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo, P. R. China
| | - Ya-Jun Cheng
- Polymers and Composites Division
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo, P. R. China
| |
Collapse
|
9
|
Simeonov A, Yasgar A, Klumpp C, Zheng W, Shafqat N, Oppermann U, Austin CP, Inglese J. Evaluation of micro-parallel liquid chromatography as a method for HTS-coupled actives verification. Assay Drug Dev Technol 2008; 5:815-24. [PMID: 18078381 DOI: 10.1089/adt.2007.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The identification of biologically active compounds from high-throughput screening (HTS) can involve considerable postscreening analysis to verify the nature of the sample activity. In this study we evaluated the performance of micro-parallel liquid chromatography (microPLC) as a separation-based enzyme assay platform for follow-up of compound activities found in quantitative HTS of two different targets, a hydrolase and an oxidoreductase. In an effort to couple secondary analysis to primary screening we explored the application of microPLC immediately after a primary screen. In microPLC, up to 24 samples can be loaded and analyzed simultaneously via high-performance liquid chromatography within a specially designed cartridge. In a proof-of-concept experiment for screen-coupled actives verification, we identified, selected, and consolidated the contents of "active" wells from a 1,536-well format HTS experiment into a 384-well plate and subsequently analyzed these samples by a 24-channel microPLC system. The method utilized 0.6% of the original 6-microl 1,536-well assay for the analysis. The analysis revealed several non-biological-based "positive" samples. The main examples included "false" enzyme activators resulting from an increase in well fluorescence due to fluorescent compound or impurity. The microPLC analysis also provided a verification of the activity of two activators of glucocerebrosidase. We discuss the benefits of microPLC and its limitations from the standpoint of ease of use and integration into a seamless postscreen workflow.
Collapse
Affiliation(s)
- Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu J, Vajjhala S, O'Connor S. A microPLC-based approach for determining kinase-substrate specificity. Assay Drug Dev Technol 2007; 5:559-66. [PMID: 17767424 DOI: 10.1089/adt.2007.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphorylation is central to signal transduction in living organisms. The specificity of phosphorylation ensures signaling fidelity. Understanding substrate specificity is essential for novel assay development in drug discovery. In this study, we have developed an innovative approach to study protein kinase and its substrate specificity. Using 24 micro parallel liquid chromatography, we studied the reaction kinetics for two different peptide substrates commonly associated with protein kinase A (PKA): Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Glu) and CREBtide (Lys-Arg-Arg-Glu-Ile-Leu-Ser-Arg-Arg-Pro-Ser-Tyr-Arg). The phosphorylation of each substrate was monitored in real time, and the kinetic parameters (V(max), K(m), k(cat), and k(cat) K(m)) were determined for a variety of initial conditions. The results from several kinetic experiments indicated that Kemptide had higher V(max) and k(cat) values compared to CREBtide under the same assay conditions. However, both substrates had a similar k cat)/K(m) value, suggesting that both substrates have similar specificity constants for PKA. We further analyzed the reaction kinetics of ATP for both PKA/substrate complexes. Interestingly, we found that there was a fivefold difference in the specificity constants for ATP affinity to the two complexes, suggesting that even though the sequence differences between the two substrates do not affect their independent interactions with PKA, the differences do have a secondary effect on each enzyme's interaction with ATP and significantly alter the ATP consumption and thus phosphorylation. This novel approach has a broad application for studying enzyme functions and enzyme/substrate specificity.
Collapse
Affiliation(s)
- Jun Wu
- Nanostream Inc., Pasadena, CA 91107, USA.
| | | | | |
Collapse
|