1
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
2
|
Mazaira GI, Erlejman AG, Zgajnar NR, Piwien-Pilipuk G, Galigniana MD. The transportosome system as a model for the retrotransport of soluble proteins. Mol Cell Endocrinol 2023; 577:112047. [PMID: 37604241 DOI: 10.1016/j.mce.2023.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins. The model shows that upon steroid binding, FKBP52 is recruited to the GR allowing its active retrograde transport on cytoskeletal tracks. Then, the entire GR heterocomplex translocates through the nuclear pore complex. The HSP90-based heterocomplex is released in the nucleoplasm followed by receptor dimerization. Subsequent findings demonstrated that the transportosome is also responsible for the retrotransport of other soluble proteins. Importantly, the disruption of this molecular oligomer leads to several diseases. In this article, we discuss the relevance of this transport machinery in health and disease.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina
| | | | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina.
| |
Collapse
|
3
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
4
|
Mazaira GI, Piwien Pilipuk G, Galigniana MD. Corticosteroid receptors as a model for the Hsp90•immunophilin-based transport machinery. Trends Endocrinol Metab 2021; 32:827-838. [PMID: 34420854 DOI: 10.1016/j.tem.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
Steroid receptors form soluble heterocomplexes with the 90-kDa heat-shock protein (Hsp90) and other chaperones and co-chaperones. The assembly and composition of the oligomer is influenced by the presence and nature of the bound steroid. Although these receptors shuttle dynamically in and out of the nucleus, their primary localization in the absence of steroid can be mainly cytoplasmic, mainly nuclear, or partitioned into both cellular compartments. Upon steroid binding, receptors become localized to the nucleus via the transportosome, a retrotransport molecular machinery that comprises Hsp90, a high-molecular-weight immunophilin, and dynein motors. This molecular machinery, first evidenced in steroid receptors, can also be used by other soluble proteins. In this review, we dissect the complete model of this transport machinery system.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Huang S, Zhang T, Wang Y, Wang L, Yan Z, Teng Y, Li Z, Lou Q, Liu S, Cai J, Chen Y, Li M, Huang H, Xu Z, Zou Y. Association of DYNC1H1 gene SNP/CNV with disease susceptibility, GCs efficacy, HRQOL, anxiety, and depression in Chinese SLE patients. J Clin Lab Anal 2021; 35:e23892. [PMID: 34272765 PMCID: PMC8373356 DOI: 10.1002/jcla.23892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background Systemic lupus erythematosus is a heterogeneous autoimmune disease characterized by multi‐system injuries and overproduction of autoantibodies. There are many genetic studies on SLE, but no report has considered the relationship between cytoplasmic dynein and SLE susceptibility. Objectives Our study intends to investigate whether DYNC1H1 gene SNP/CNV is related to SLE susceptibility, GCs efficacy, HRQOL, anxiety, and depression in Chinese SLE patients. Methods A total of 502 cases and 544 healthy controls were recruited into the case‐control study, and 472 subjects from the case group were followed up for 12 weeks to evaluate GCs efficacy, HRQOL, anxiety, and depression. Multiplex SNaPshot technique was applied to genotype the seven SNPs of DYNC1H1, and AccuCopyTM method was conducted to quantify the copy number of DYNC1H1. Anxiety and depression were evaluated using HAMA and HAMD‐24 scales, respectively. The SF‐36 scale was used to assess HRQOL. Results The significant association between SNP rs1190606 and SLE susceptibility was displayed in the dominant model (PBH = 0.004) as well as its allele model (PBH = 0.004). We also found that SNP rs2273440 was related to photosensitization symptom in SLE patients (PBH = 0.032). In the follow‐up study, SNP rs11160668 was connected with the improvement of BP in male patients (PBH = 0.011). However, no association of DYNC1H1 gene with GCs efficacy, anxiety, and depression was found. No CNV in DYNC1H1 was detected. Conclusions The study suggests that DYNC1H1 gene polymorphisms may have an effect on SLE susceptibility and BP improvement of HRQOL in Chinese SLE patients.
Collapse
Affiliation(s)
- Shunwei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Tingyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Yuhua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Linlin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Ziye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Qiuyue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mu Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hailiang Huang
- Department of Laboratory Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhouzhou Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| |
Collapse
|
6
|
Zhang J, Zhao J, Sun Y, Liang Y, Zhao J, Zou H, Zhang T, Ren L. GR-mediated anti-inflammation of α-boswellic acid: Insights from in vitro and in silico studies. Food Chem Toxicol 2021; 155:112379. [PMID: 34197882 DOI: 10.1016/j.fct.2021.112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Although multiple bioactivities of α-boswellic acid have been reported, the molecular mechanism of its anti-inflammatory action is not yet clear. Hence, glucocorticoid receptor (GR)-mediated anti-inflammation of α-boswellic acid was investigated in this work. Fluorescence polarization assay suggested that α-boswellic acid bound to GR with IC50 value of 658.00 ± 0.21 μM. Upon binding to α-boswellic acid, GR translocated from cytoplasm into nucleus of HeLa cells, facilitating sequential transcriptional regulation of GR-related genes. Luciferase reporter assay suggested that α-boswellic acid lacked GR transcriptional activity, indicating its potential as a dissociative GR ligand. Interestingly, α-boswellic acid selectively modulated the anti-inflammatory gene CBG (marker for GR transrepression), while leaving the "side-effect" gene TAT (marker for GR transactivation) unaffected in HepG2 cells. Furthermore, α-boswellic acid inhibited lipopolysaccharide-stimulated cytokines production in U937 macrophages, confirming its anti-inflammation property in vitro. Molecular docking showed that both hydrogen-bonding and hydrophobic interactions helped to stabilize α-boswellic acid-GR binding. Their binding stability was further confirmed in a 70-ns dynamics simulation. In summary, α-boswellic acid could bind to and translocate GR but did not induce glucocorticoid response element-mediated transcription. Since α-boswellic acid showed the dissociated characteristic that separated transrepression from transactivation, it might be a selective GR modulator against inflammatory disorders.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jiarui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Fancher AT, Hua Y, Strock CJ, Johnston PA. Assays to Interrogate the Ability of Compounds to Inhibit the AF-2 or AF-1 Transactivation Domains of the Androgen Receptor. Assay Drug Dev Technol 2019; 17:364-386. [PMID: 31502857 DOI: 10.1089/adt.2019.940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the leading cause of cancer and second leading cause of cancer-related death in men in the United States. Twenty percent of patients receiving the standard of care androgen deprivation therapy (ADT) eventually progress to metastatic and incurable castration-resistant prostate cancer (CRPC). Current FDA-approved drugs for CRPC target androgen receptor (AR) binding or androgen production, but only provide a 2- to 5-month survival benefit due to the emergence of resistance. Overexpression of AR coactivators and the emergence of AR splice variants, both promote continued transcriptional activation under androgen-depleted conditions and represent drug resistance mechanisms that contribute to CRPC progression. The AR contains two transactivation domains, activation function 2 (AF-2) and activation function 1 (AF-1), which serve as binding surfaces for coactivators involved in the transcriptional activation of AR target genes. Full-length AR contains both AF-2 and AF-1 surfaces, whereas AR splice variants only have an AF-1 surface. We have recently prosecuted a high-content screening campaign to identify hit compounds that can inhibit or disrupt the protein-protein interactions (PPIs) between AR and transcriptional intermediary factor 2 (TIF2), one of the coactivators implicated in CRPC disease progression. Since an ideal inhibitor/disruptor of AR-coactivator PPIs would target both the AF-2 and AF-1 surfaces, we describe here the development and validation of five AF-2- and three AF-1-focused assays to interrogate and prioritize hits that disrupt both transactivation surfaces. The assays were validated using a test set of seven known AR modulator compounds, including three AR antagonists and one androgen synthesis inhibitor that are FDA-approved ADTs, two investigational molecules that target the N-terminal domain of AR, and an inhibitor of the Hsp90 (heat shock protein) molecular chaperone.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Head and Neck Cancer, and Skin Cancer Specialized Programs of Research Excellence, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Fancher AT, Hua Y, Camarco DP, Close DA, Strock CJ, Johnston PA. High-Content Screening Campaign to Identify Compounds That Inhibit or Disrupt Androgen Receptor-Transcriptional Intermediary Factor 2 Protein-Protein Interactions for the Treatment of Prostate Cancer. Assay Drug Dev Technol 2018; 16:297-319. [PMID: 30109944 DOI: 10.1089/adt.2018.858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Twenty percent of prostate cancer (PCa) patients develop a noncurable drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC). Overexpression of Androgen Receptor (AR) coactivators such as transcriptional intermediary factor 2 (TIF2) is associated with poor CRPC patient outcomes. We describe the implementation of the AR-TIF2 protein-protein interaction biosensor (PPIB) assay in a high-content screening (HCS) campaign of 143,535 compounds. The assay performed robustly and reproducibly and enabled us to identify compounds that inhibited dihydrotestosterone (DHT)-induced AR-TIF2 protein-protein interaction (PPI) formation or disrupted preexisting AR-TIF2 PPIs. We used multiparameter HCS data z-scores to identify and deprioritize cytotoxic or autofluorescent outliers and confirmed the resulting qualified actives in triplicate. None of the confirmed AR-TIF2 PPIB inhibitors/disruptors exhibited activity in a p53-hDM2 PPIB counter screen, indicating that they were unlikely to be either nonselective PPI inhibitors or to interfere with the biosensor assay format. However, eight confirmed AR-TIF2 PPIB actives also inhibited the glucocorticoid receptor (GR) nuclear translocation counter screen by >50%. These compounds were deprioritized because they either lacked AR specificity/selectivity, or they inhibited a shared component of the AR and GR signaling pathways. Twenty-nine confirmed AR-TIF2 PPIB actives also inhibited the AR nuclear localization counter screen, suggesting that they might indirectly inhibit the AR-TIF2 PPIB assay rather than directly blocking/disrupting PPIs. A total of 62.2% of the confirmed actives inhibited the DHT-induced AR-TIF2 PPI formation in a concentration-dependent manner with IC50s < 40 μM, and 59.4% also disrupted preexisting AR-TIF2 PPI complexes. Overall, the hit rate for the AR-TIF2 PPIB HCS campaign was 0.12%, and most hits inhibited AR-TIF2 PPI formation and disrupted preexisting AR-TIF2 complexes with similar AR-red fluorescent protein distribution phenotypes. Further secondary and tertiary hit characterization assays are underway to select AR-TIF2 PPI inhibitor/disruptor hits suitable for medicinal chemistry lead optimization and development into novel PCa/CRPC therapeutics.
Collapse
Affiliation(s)
- Ashley T Fancher
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yun Hua
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel P Camarco
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 University of Pittsburgh Medical Center , Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Fancher AT, Hua Y, Camarco DP, Close DA, Strock CJ, Johnston PA. Reconfiguring the AR-TIF2 Protein-Protein Interaction HCS Assay in Prostate Cancer Cells and Characterizing the Hits from a LOPAC Screen. Assay Drug Dev Technol 2016; 14:453-477. [PMID: 27606620 DOI: 10.1089/adt.2016.741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The continued activation of androgen receptor (AR) transcription and elevated expression of AR and transcriptional intermediary factor 2 (TIF2) coactivator observed in prostate cancer (CaP) recurrence and the development of castration-resistant CaP (CRPC) support a screening strategy for small-molecule inhibitors of AR-TIF2 protein-protein interactions (PPIs) to find new drug candidates. Small molecules can elicit tissue selective effects, because the cells of distinct tissues express different levels and cohorts of coregulatory proteins. We reconfigured the AR-TIF2 PPI biosensor (PPIB) assay in the PC-3 CaP cell line to determine whether AR modulators and hits from an AR-TIF2 PPIB screen conducted in U-2 OS cells would behave differently in the CaP cell background. Although we did not observe any significant differences in the compound responses between the assay performed in osteosarcoma and CaP cells, the U-2 OS AR-TIF2 PPIB assay would be more amenable to screening, because both the virus and cell culture demands are lower. We implemented a testing paradigm of counter-screens and secondary hit characterization assays that allowed us to identify and deprioritize hits that inhibited/disrupted AR-TIF2 PPIs and AR transcriptional activation (AR-TA) through antagonism of AR ligand binding or by non-specifically blocking nuclear receptor trafficking. Since AR-TIF2 PPI inhibitor/disruptor molecules act distally to AR ligand binding, they have the potential to modulate AR-TA in a cell-specific manner that is distinct from existing anti-androgen drugs, and to overcome the development of resistance to AR antagonism. We anticipate that the application of this testing paradigm to characterize the hits from an AR-TIF2 PPI high-content screening campaign will enable us to prioritize the AR-TIF2 PPI inhibitor/disruptor leads that have potential to be developed into novel therapeutics for CaP and CRPC.
Collapse
Affiliation(s)
- Ashley T Fancher
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yun Hua
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel P Camarco
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Hua Y, Shun TY, Strock CJ, Johnston PA. High-content positional biosensor screening assay for compounds to prevent or disrupt androgen receptor and transcriptional intermediary factor 2 protein-protein interactions. Assay Drug Dev Technol 2015; 12:395-418. [PMID: 25181412 DOI: 10.1089/adt.2014.594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor-transcriptional intermediary factor 2 (AR-TIF2) positional protein-protein interaction (PPI) biosensor assay described herein combines physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information of AR and TIF2 functional domains along with intracellular targeting sequences and fluorescent reporters. Expression of the AR-red fluorescent protein (RFP) "prey" and TIF2-green fluorescent protein (GFP) "bait" components of the biosensor was directed by recombinant adenovirus constructs that expressed the ligand binding and activation function 2 surface domains of AR fused to RFP with nuclear localization and nuclear export sequences, and three α-helical LXXLL motifs from TIF2 fused to GFP and an HIV Rev nucleolar targeting sequence. In unstimulated cells, AR-RFP was localized predominantly to the cytoplasm and TIF2-GFP was localized to nucleoli. Dihydrotestosterone (DHT) treatment induced AR-RFP translocation into the nucleus where the PPIs between AR and TIF2 resulted in the colocalization of both biosensors within the nucleolus. We adapted the translocation enhanced image analysis module to quantify the colocalization of the AR-RFP and TIF2-GFP biosensors in images acquired on the ImageXpress platform. DHT induced a concentration-dependent AR-TIF2 colocalization and produced a characteristic condensed punctate AR-RFP PPI nucleolar distribution pattern. The heat-shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and antiandrogens flutamide and bicalutamide inhibited DHT-induced AR-TIF2 PPI formation with 50% inhibition concentrations (IC50s) of 88.5±12.5 nM, 7.6±2.4 μM, and 1.6±0.4 μM, respectively. Images of the AR-RFP distribution phenotype allowed us to distinguish between 17-AAG and flutamide, which prevented AR translocation, and bicalutamide, which blocked AR-TIF2 PPIs. We screened the Library of Pharmacologically Active Compounds (LOPAC) set for compounds that inhibited AR-TIF2 PPI formation or disrupted preexisting complexes. Eleven modulators of steroid family nuclear receptors (NRs) and 6 non-NR ligands inhibited AR-TIF2 PPI formation, and 10 disrupted preexisting complexes. The hits appear to be either AR antagonists or nonspecific inhibitors of NR activation and trafficking. Given that the LOPAC set represents such a small and restricted biological and chemical diversity, it is anticipated that screening a much larger and more diverse compound library will be required to find AR-TIF2 PPI inhibitors/disruptors. The AR-TIF2 protein-protein interaction biosensor (PPIB) approach offers significant promise for identifying molecules with potential to modulate AR transcriptional activity in a cell-specific manner that is distinct from the existing antiandrogen drugs that target AR binding or production. Small molecules that disrupt AR signaling at the level of AR-TIF2 PPIs may also overcome the development of resistance and progression to castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Yun Hua
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
11
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
12
|
Johnston PA, Shinde SN, Hua Y, Shun TY, Lazo JS, Day BW. Development and validation of a high-content screening assay to identify inhibitors of cytoplasmic dynein-mediated transport of glucocorticoid receptor to the nucleus. Assay Drug Dev Technol 2012; 10:432-56. [PMID: 22830992 DOI: 10.1089/adt.2012.456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid ligand-induced trafficking of glucocorticoid nuclear hormone receptor (GR) from the cytoplasm to the nucleus is an extensively studied model for intracellular retrograde cargo transport employed in constructive morphogenesis and many other cellular functions. Unfortunately, potent and selective small-molecule disruptors of this process are lacking, which has restricted pharmacological investigations. We describe here the development and validation of a 384-well high-content screening (HCS) assay to identify inhibitors of the rapid ligand-induced retrograde translocation of cytoplasmic glucocorticoid nuclear hormone receptor green fluorescent fusion protein (GR-GFP) into the nuclei of 3617.4 mouse mammary adenocarcinoma cells. We selected 3617.4 cells, because they express GR-GFP under the control of a tetracycline (Tet)-repressible promoter and are exceptionally amenable to image acquisition and analysis procedures. Initially, we investigated the time-dependent expression of GR-GFP in 3617.4 cells under Tet-on and Tet-off control to determine the optimal conditions to measure dexamethasone (Dex)-induced GR-GFP nuclear translocation on the ArrayScan-VTI automated imaging platform. We then miniaturized the assay into a 384-well format and validated the performance of the GR-GFP nuclear translocation HCS assay in our 3-day assay signal window and dimethylsulfoxide validation tests. The molecular chaperone heat shock protein 90 (Hsp90) plays an essential role in the regulation of GR steroid binding affinity and ligand-induced retrograde trafficking to the nucleus. We verified that the GR-GFP HCS assay captured the concentration-dependent inhibition of GR-GFP nuclear translocation by 17-AAG, a benzoquinone ansamycin that selectively blocks the binding and hydrolysis of ATP by Hsp90. We screened the 1280 compound library of pharmacologically active compounds set in the Dex-induced GR-GFP nuclear translocation assay and used the multi-parameter HCS data to eliminate cytotoxic compounds and fluorescent outliers. We identified five qualified hits that inhibited the rapid retrograde trafficking of GR-GFP in a concentration-dependent manner: Bay 11-7085, 4-phenyl-3-furoxancarbonitrile, parthenolide, apomorphine, and 6-nitroso-1,2-benzopyrone. The data presented here demonstrate that the GR-GFP HCS assay provides an effective phenotypic screen and support the proposition that screening a larger library of diversity compounds will yield novel small-molecule probes that will enable the further exploration of intracellular retrograde transport of cargo along microtubules, a process which is essential to the morphogenesis and function of all cells.
Collapse
Affiliation(s)
- Paul A Johnston
- School of Medicine, University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|